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Here we propose the variational discrete action theory (VDAT) to study the ground state properties of
quantum many-body Hamiltonians. VDAT is a variational theory based on the sequential product density
matrix (SPD) ansatz, characterized by an integer N , which monotonically approaches the exact solution
with increasing N . To evaluate the SPD, we introduce a discrete action and a corresponding integer time
Green’s function. We use VDAT to exactly evaluate the SPD in two canonical models of interacting
electrons: the Anderson impurity model and the d ¼ ∞ Hubbard model. For the latter, we evaluate
N ¼ 2–4, where N ¼ 2 recovers the Gutzwiller approximation (GA), and we show that N ¼ 3, which
exactly evaluates the Gutzwiller-Baeriswyl wave function, provides a truly minimal yet precise description
of Mott physics with a cost similar to that of the GA. VDAT is a flexible theory for studying quantum
Hamiltonians, competing both with state-of-the-art methods and simple, efficient approaches all within a
single framework.
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Computing the ground state properties of quantum
many-body Hamiltonians is a fundamental task in physics.
A common strategy to approximately solve a Hamiltonian
is the use of variational wave functions, which allows one
to find the best solution within some fraction of the Hilbert
space. A generic approach is to start from some reference
wave function and apply some projector, as in the well-
known Jastrow [1] and Gutzwiller [2–4] variational wave
functions. A key limitation to such approaches is that they
often cannot be intelligently improved, meaning that it is
difficult to increase the searchable region of Hilbert space
efficiently. One approach to address this limitation is tensor
network methods [5–7], in which some control parameter
increases accuracy at some computational cost; but these
approaches have proven well suited only for low-dimen-
sional systems.
Here we propose a new class of variational density

matrices: the sequential product density matrix (SPD). The
SPD is motivated by the Trotter-Suzuki [8] decomposition
and is characterized by an integer N . The SPD provides a
paradigm for variational approaches in that the precision
can be systematically improved by increasingN , and it can
be applied beyond low dimensions. In practice, such an
ansatz is not useful unless one has a systematic and efficient
approach for evaluating it. Our key development is the
introduction of the discrete action theory (DAT) and the
corresponding integer time Green’s function (ITGF), which
may be used for evaluating a SPD. The DAT has a perfect
parallel to the standard many-body Green’s function
formalism, though with nontrivial differences. Many of
the key ideas from traditional many-body theory can
immediately be generalized to the DAT, such as the
dynamical mean-field theory (DMFT) [9]. Using the

DAT for evaluating the SPD, we can then perform the
variational minimization to obtain the ground state, and we
refer to this entire approach as the variational discrete
action theory (VDAT). A companion article to this Letter
provides extensive derivations and minimal examples to
document the foundations of VDAT [10].
Given a Hamiltonian Ĥ ¼ Ĥ0 þ V̂, where Ĥ0 is non-

interacting and V̂ is interacting, we motivate the SPD by
considering the following variational wave function:

expðγ1Ĥ0Þ expðg1V̂Þ… expðγNĤ0Þ expðgNV̂Þjφ0i; ð1Þ

where γi, gi are variational parameters and jφ0i is the
ground state wave function of Ĥ0. Equation (1) can be
viewed as a variational application of the Trotter-Suzuki
decomposition [8,11,12], where the N → ∞ limit will
cover the exact ground state wave function. The essence
of this ansatz was first proposed several decades ago by
Dzierzawa et al. [13], motivated by the generalization of the
Baeriswyl wave function [14,15] by Otsuka [16]; and all of
this work was motivated by improving upon the well-
known Gutzwiller wave function [2]. More recently, a
unitary version of this wave function was proposed in the
context of quantum computing by Farhi et al. [17]
and further extended by Wecker et al. [18] and Grimsley
et al. [19]. Our SPD further generalizes the idea
behind Eq. (1).
Given a Hamiltonian with L spin orbitals, the SPD is

given as

ϱ̂ ¼ exp ðγ1 · n̂ÞP̂1… exp ðγN · n̂ÞP̂N ¼ P̂1…P̂N ; ð2Þ
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where P̂τ is a generic interacting projector, and τ ¼ 1;…;N
is the integer time label; exp ðγτ · n̂Þ is the noninteracting
projector, where γτ · n̂≡P

L
i¼1

P
L
j¼1½γτ�ij½n̂�ij and

½n̂�ij ¼ â†i âj; and P̂τ ¼ exp ðγτ · n̂ÞP̂τ. When using the
SPD as a variational density matrix, it must be restricted
to a Hermitian and semidefinite form; and there are two
variants for a given N [10]. It should be noted that the
most general noninteracting projector would include the
terms â†i â

†
j and âiâj, but we presently omit them for brevity.

We also define a noninteracting SPD as ϱ̂0 ¼ exp ðγ1 · n̂Þ…
exp ðγN · n̂Þ, which will be the starting point for
the perturbative expansion of the SPD. The variational
parameters of the SPD are the γτ and the parameters within
P̂τ. A common choice for the interacting projector is
P̂τ ¼ expðV̂τÞ ¼ exp ðPi gτ;iV̂iÞ, where

P
i V̂i ¼ V̂ is

some decomposition of the interacting portion of the
Hamiltonian, though there are many possible choices
(e.g., as in the Jastrow wave function for the Hubbard
model [1,20–22]). The SPD brings several generalizations
over Eq. (1). First, the SPD explicitly includes all possible
variational freedom at the single-particle level and formally
allows for a generic interacting projector. Second, the SPD
form allows for a systematic evaluation using the ITGF
formalism introduced in this Letter. It is useful to note that
N ¼ 1 recovers the well-known Hartree-Fock approxima-
tion;N ¼ 2 recovers the Gutzwiller, Baeriswyl, and Jastrow
wave functions, in addition to unitary and variational
coupled cluster methods [23–26]; and N ¼ 3 recovers the
Gutzwiller-Baeriswyl [16] and Baeriswyl-Gutzwiller [13]
wave functions (see [10] for a detailed discussion).
We now introduce the DAT to evaluate the Hamiltonian

under the SPD at a given set of variational parameters. We
begin with the ITGF formalism, where the integer time
evolution in the integer time interaction representation is
given as

ÔIðτÞ ¼ ÛIðτÞÔÛIðτÞ−1; ð3Þ

ÛIðτÞ ¼ exp ðγ1 · n̂Þ… exp ðγτ · n̂Þ; ð4Þ

where τ ¼ 1;…;N . Taylor series expanding the interacting
projector, the expectation value of some operator Ô under
the SPD is given as

hÔiϱ̂ ¼
P∞

n¼0
1
n! hTð

PN
τ¼1 V̂τ;IðτÞÞnÔIðN Þiϱ̂0P∞

n¼0
1
n! hTð

PN
τ¼1 V̂τ;IðτÞÞniϱ̂0

; ð5Þ

where the quantum average is defined as hÔiρ̂ ¼
Trðρ̂ ÔÞ=Trðρ̂Þ; the integer time ordering operator T first
sorts the operators according to ascending integer time and
then according to the position in the original ordering of
operators and finally the result is presented from left to
right; additionally, the resulting sign must be tracked when

permuting operators. It should be noted that our time
convention is opposite to the usual definition [27]. Each
term in Eq. (5) can be evaluated via the noninteracting
ITGF:

½g0�kτ;k0τ0 ¼ hTâ†k;IðτÞâk0;Iðτ0Þiϱ̂0 ; ð6Þ

using the integer time Wick’s theorem [10]. In general,
Eq. (5) will require the evaluation of an infinite number of
terms, but if the interacting projector is restricted to a local
subspace, or if the system is finite, we can resum the
expansion into a finite number of terms.
For a test case, we consider the Anderson impurity

model (AIM) on a ring [10], which has recently been
extensively studied using density matrix renormalization
group (DMRG)[28]. The AIM consists of a noninter-
acting bandwidth of W, a hybridization V, and an impurity
interaction U. The interacting projectors can be chosen
as local to the impurity, and the exponential can be
rewritten as a sum of Hubbard operators within the
impurity as

P̂τ ¼ exp

�
μτ
X

σ

n̂σ þ uτn̂↑n̂↓

�
¼

X

Γ
Pτ;ΓX̂Γ; ð7Þ

where X̂Γ ¼ jΓihΓj is a Hubbard operator and Pτ;0 ¼ 1,
Pτ;σ ¼ expðμτÞ, and Pτ;2 ¼ expð2μτ þ uτÞ; and the sub-
scripts 0, σ, and 2 correspond to empty, singly occupied,
and double occupied local states, respectively. For this
interacting projector, Eq. (5) will have a finite number of
terms and thus can be evaluated exactly.
The computational cost of evaluating the total energy

for a given SPD in the AIM is dictated by two factors.
The first cost is associated with constructing the non-
interacting ITGF for the entire system, which scales at
worst as N 2L3. Second, there is the cost of evaluating
the total energy using the integer time Wick’s theorem,
which scales exponentially with the number of integer time
steps N [10]. For the particular cases of N ≤ 4 and
L ≈ 1000, the computational cost is always dominated
by L via the first factor, and therefore in this scenario a
single evaluation of VDAT has a relatively minimal
computational cost.
Having all the machinery necessary to evaluate the total

energy under the SPD, we can then minimize over the
variational parameters to determine the ground state of the
Hamiltonian. Given the specific parametrization of the
SPD we have chosen (see Ref. [10], Section VII B 1),
there will be ⌈ðN − 1Þ=2⌉ interacting variational param-
eters, while there will be 3bðN − 1Þ=2c noninteracting
variational parameters. Therefore, the total number of
iterations for minimizing the energy under the SPD will
be a constant that is independent of L, and VDAT for
1 < N ≤ 4 should have a similar scaling to N ¼ 1 (i.e.,
Hartree-Fock).
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We now evaluate the ground state energy EðU;VÞ
and the local impurity spin correlation [29] hŜzfŜzfi ¼
1
4
hðn̂f↑ − n̂f↓Þ2i [see Fig. 1(a)], where the latter probes

the double occupancy and density on the impurity site, and
compare to numerically exact DMRG calculations [28]. For
N ¼ 2, which recovers the Gutzwiller wave function, the
result is only a rough approximation to the DMRG results.
Alternatively, N ¼ 3 shows only very small deviations
from the DMRG results, and N ¼ 4 further diminishes the
differences. Clearly, the SPD converges extremely rapidly
with respect to N . What is especially remarkable is that
N ¼ 4 has a computational scaling similar to Hartree-
Fock, yet has a precision approaching that of DMRG. We
can also compute the unscreened spin [28,30]

SðRÞ ¼ hŜzf(Ŝzf þ Ŝz0;c þ
XR

r¼1

ðŜzr;c þ ŜzL−r;cÞ)i; ð8Þ

which is a far more challenging observable given that it
involves a long-range correlation between the impurity and
the bath (see Fig. 1(b)). Once again,N ¼ 2 has reasonable
but relatively inaccurate results, while N ¼ 3, 4 are much
more accurate.

The preceding approach of using the integer time Wick’s
theorem to sum all diagrams would be intractable for a
general interacting system. This motivates us to push
forward our discrete action theory and generalize the
traditional tools of many-body physics. Consider the
interacting ITGF under an SPD defined as

½g�kτ;k0τ0 ¼ hTâ†kðτÞâk0 ðτ0Þiϱ̂; ð9Þ

where τ ¼ 1;…;N and k ¼ 1;…; L and ÔðτÞ is an
operator in the integer time Heisenberg representation
defined as

ÔðτÞ ¼ ÛτÔÛ−1
τ ; Ûτ ¼ P̂1…P̂τ: ð10Þ

Furthermore, when constructing interaction energies and
computing the gradient of the total energy with respect to
the variational parameters, we will need general integer
time correlation functions hTÔ1ðτ1Þ…ÔMðτMÞiϱ̂, which
can be rewritten in the integer time Schrodinger represen-
tation as

hTÂÔ1;Sðτ1Þ…ÔM;SðτMÞi1̂
hTÂi1̂

; where Â ¼ Â0P̂; ð11Þ

Â0 ¼ exp
�XN

τ¼1

γτ · n̂SðτÞ
�
; P̂ ¼

YN

τ¼1

P̂τ;SðτÞ; ð12Þ

and ÔSðτÞ is an operator in the integer time Schrodinger
representation where ÔSðτÞ ¼ Ô after applying the time
ordering operator. We refer to Â as the discrete action,
given that it encodes all possible integer time correlations
under the SPD. Moreover, we can generalize the form of Â
such that it can describe integer time correlations beyond
the SPD, and an important generalization allows for an Â0

that has off-diagonal integer time components as

Â0 ¼ exp

�X

kτk0τ0
½v�kτ;k0τ0 â†k;SðτÞâk0;Sðτ0Þ

�
; ð13Þ

where v is a general matrix of dimension LN × LN [10].
We refer to this more general form as a canonical discrete
action (CDA), which will be critical to exactly evaluating
the SPD in d ¼ ∞.
It is useful to define the discrete generating function,

which encodes all information of the discrete action into a
scalar function

Zðg0Þ≡ hÂi1̂=hÂ0i1̂: ð14Þ

For example, using the discrete generating function and the
Lie group properties of the noninteracting many-body density
matrix [10], we can derive the discrete Dyson equation
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FIG. 1. A comparison of VDAT (N ¼ 2, 3, 4) and published
DMRG results [28] for the Anderson impurity model on a ring
with V=W ¼ 0.1. (a) A plot of energy difference −ΔE ¼
EðU; 0Þ − EðU;VÞ (right axis) and hŜzfŜzfi (left axis) vs U=W,
with L ¼ 1397 unless otherwise noted. (b) The unscreened spin
SðrÞ vs the distance from the impurity site with L ¼ 797.
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ðg−1 − 1Þ ¼ ðg−10 − 1Þ expð−ΣÞT; ð15Þ

where the integer time self-energy Σ and exponential
integer time self-energy S are obtained from the generating
function as

exp ðΣÞT ¼ S−1 ¼ 1þ 1

Z1 − ∂Z
∂gT

0

g0

∂Z
∂gT0 : ð16Þ

This discrete Dyson equation plays a central role in our
formalism, much like the traditional Dyson equation. In the
limit of large N , the discrete Dyson equation reverts to the
usual Dyson equation assuming that the SPD is chosen as
the Trotter-Suzuki decomposition [10]. While we have
illustrated the single-particle ITGF above, any n-particle
integer time correlation function can be determined from
the generating function [10].
We now have the proper tools to study the single-band

Hubbard model, and we use an SPD with an interacting
projector P̂τ ¼ expðμτ

P
iσ n̂iσ þ

P
i uτn̂i↑n̂i↓Þ, while the

noninteracting projector uses a diagonal γτ in the basis
that diagonalizes the noninteracting Hamiltonian. To
evaluate the discrete generating function, we introduce
the self-consistent canonical discrete action approximation
(SCDA), which is the integer time analog of DMFT [9].
The SCDAmaps the SPD to a collection of CDAs, with one
CDA corresponding to each site in the lattice, and the
noninteracting part of the CDA is determined self-consis-
tently while the interacting part is taken from the SPD. The
essence of the SCDA is the assumption that the integer time
self-energy is local:

ΣijðgÞ ¼ δijΣlocðglocÞ: ð17Þ

Analogous to DMFT, which assumes a local self-energy
and becomes exact in d ¼ ∞, the SCDA exactly evaluates
the SPD in d ¼ ∞. For example, the SCDA for N ¼ 2
recovers the result that the Gutzwiller approximation
exactly evaluates the Gutzwiller wave function in d ¼ ∞
[31]. Additionally, the SCDA for N ¼ 3 exactly evaluates
generalizations of the Gutzwiller-Baeriswyl and Baeriswyl-
Gutzwiller wave functions in d ¼ ∞, which had not yet
been achieved. For N > 3, the SCDA exactly evaluates an
infinite number of variational wave functions in d ¼ ∞ that
have not yet been considered.
The SCDA algorithm exactly parallels the DMFT

algorithm. We can begin with a guess for the noninter-
acting ITGF G ¼ R

dϵDðϵÞg0ðϵÞ for the CDA, where
DðϵÞ is the density of states. We can then compute the
generating function of the CDA, which yields Sloc. We
then use this exponential integer time self-energy to
update the interacting ITGF for each energy orbital as

gðϵÞ ¼ 1
g0ðϵÞ þ (1 − g0ðϵÞ)Sloc

g0ðϵÞ: ð18Þ

Then we obtain the new interacting local ITGF as
gloc ¼

R
dϵDðϵÞgðϵÞ. Finally, the new noninteracting

ITGF of the CDA is

G ¼ Sloc
1

1þ glocðSloc − 1Þ gloc: ð19Þ

This procedure must be iterated until self-consistency is
achieved, which yields a single evaluation of the SPD for a
given set of variational parameters. The above procedure
is applicable to any Hubbard-like model, but it will yield
an exact evaluation of the SPD for infinite dimen-
sions [10].
The number of variational parameters for the interacting

projector will be the same as for the AIM, while for the
noninteracting projector we restrict to at most four varia-
tional parameters for each integer time [10]. The main
computational complexity of solving the Hubbard model as
compared to the AIM is that we must perform a self-
consistency condition, though this can normally be
achieved in small number of iterations. We now address
the d ¼ ∞Hubbard model on the Bethe lattice. It should be
emphasized that the computed ground state energy within
VDAT is a rigorous upper bound for the exact ground state
energy, and we can compare to the numerically exact
dynamical mean-field theory results obtained using the
numerical renormalization group (NRG) method as the
impurity solver [32].
We begin by examining the double occupancy, which

is the derivative of the ground state energy with respect
to U and hence a sensitive probe of the total ground state
energy [see Fig. 2(a); also see Supplemental Material [33]
for plots of ground state energy]. First we present VDAT
results forN ¼ 3 and selected results forN ¼ 2, where the
latter is the well known Gutzwiller approximation. For half-
filling, shown in red, we see that VDAT N ¼ 3 is very
close to the DMFT solutions (points), reliably capturing the
Mott metal-insulator transition and illustrating drastic
improvement beyond N ¼ 2. Furthermore, we can see
that VDAT N ¼ 3 clearly captures the sensitive changes
with small doping, illustrated for the densities of 1, 0.99,
0.98, 0.95, and 0.9. We can also proceed to much larger
dopings (see inset), where VDAT N ¼ 3 once again
reliably describes the DMFT solution. All VDAT results
discussed thus far have been forN ≤ 3, and it is interesting
to consider N ¼ 4 to better understand the convergence of
the VDAT. Therefore, we examine the error in the double
occupancy at half filling for N ¼ 2–4 [see Fig. 2(c)]. We
see thatN ¼ 4 has a smaller error for all values ofU=t, as it
must, and the error for large U=t is nearly zero. Another
interesting quantity is the density distribution nðϵÞ ¼
hâ†ϵσâϵσi [see Fig. 2(d)], given that the kinetic energy is
2
R∞
−∞ dϵDðϵÞnðϵÞϵ. It is well known that N ¼ 2 (i.e.,

Gutzwiller) produces a constant density distribution below
the Fermi energy [the horizontal line is denoted with a

PHYSICAL REVIEW LETTERS 126, 206402 (2021)

206402-4



single green point in Fig. 2(d)], and we show that N > 2
produces a nontrivial energy dependence. Another key
aspect of nðϵÞ is the discontinuity at the Fermi energy,
which dictates the quasiparticle weight Z ¼ nð0−Þ − nð0þÞ
[see Fig. 2(b)]. WhileN ¼ 2 recovers the usual Gutzwiller
result, N > 2 precisely captures the Mott transition and
yields reasonable agreement for N ¼ 4. Furthermore, one

can approximately extract the real frequency spectrum from
the extended density distribution [33].
In conclusion, we have proven that VDAT with N ¼ 3

already yields efficient and precise results for the Anderson
Impurity model and for the d ¼ ∞ Hubbard model.
Furthermore, it is straightforward to address the multi-
orbital Hubbard model [10], which is under way. Given that
VDAT recovers the Hartree-Fock and Gutzwiller wave
functions, it is clear that VDAT can be combined with DFT
in the same spirit as DFTþ U [39] and DFTþ Gutzwiller
[40]; and therefore DFT+VDAT would be a prime candi-
date as an efficient first-principles approach to strongly
correlated materials, which should rival DFTþ DMFT
[41]. There are many possible directions for future develop-
ment. Both diagrammatic and auxiliary field quantum
Monte Carlo could be generalized to our formalism.
While our present work on the SPD has used real
variational parameters, we can apply VDAT using an
SPD with unitary projectors [10], which could have utility
in quantum computing [17–19] and unitary coupled cluster
theory [24–26]. VDATwill be a key tool for parametrizing
energy functionals in the context of the off-shell effective
energy theory [42].
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