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Resonant x-ray emission spectroscopy was used to determine the pressure dependence of the f-electron
occupancy in the Kondo insulator SmB6. Applied pressure reduces the f occupancy, but surprisingly, the
material maintains a significant divalent character up to a pressure of at least 35 GPa. Thus, the closure of
the resistive activation energy gap and onset of magnetic order are not driven by stabilization of an integer
valent state. Over the entire pressure range, the material maintains a remarkably stable intermediate valence
that can in principle support a nontrivial band structure.
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The study of intermediate valent compounds, which
dates back half a century [1], has recently been reinvig-
orated by the possibility that Kondo insulators harbor a
topological surface state [2]. The best-studied candidate
material is SmB6 [3,4], which was only recently shown to
be electrically insulating in the bulk [5–7]. Although
activated electrical transport is readily inferred from the
dramatic temperature-dependent resistivity, at low temper-
atures the resistivity saturates at a finite value instead of
diverging to infinity. This anomalous behavior is now
linked to the presence of electrically conducting surface
states [8], and many experiments have been directed at
determining the topological classification of the material
[9–20]. A full description of the underlying strongly
correlated electron state is key to understanding nontrivial
topology in f-electron materials.
Applied pressure is a powerful tool for studying inter-

mediate valent systems because their electronic states are
sensitive to small changes in interatomic separation. Awell-
known example of this behavior is SmS, in which the
divalent “black” phase is dramatically transformed into a
semiconducting intermediate valent “gold” phase by the
application of a very modest pressure of 0.6 GPa [21]. As
pressure increases, Sm becomes fully trivalent and it
magnetically orders [22–24]. SmB6 follows this example:
an intermediate valence exists already at ambient pressure
[25], and the valence is sensitive to temperature [26] and
chemical pressure [27]. Applied pressure stabilizes a
metallic and magnetic ground state over the range
4–10 GPa [28–30] and increases the Sm valence [31,32].
By analogy, a pressure-induced trivalent state is anticipated
in SmB6, but it has not yet been shown spectroscopically,

nor is it known how its onset correlates with either
metallization or magnetic order [29].
Unexpectedly, our experiment shows that an intermediate

valent state in SmB6 persists to the highest measured
pressures, about 35 GPa, and shows no signs of tending
towards saturation. This unprecedented discovery implies
that neither the metallization nor the onset of magnetic order
are associatedwith simple integer valency, but are character-
istics of a robust intermediate-valent state. Such a state
violates the paradigm that valence fluctuations destabilize
spins on long time scales, and demands a new model of
f-electron valence stability. Most intriguingly, the coexist-
ence ofmagnetism and topologically nontrivial intermediate
bulk valence [3] may help explain recent suggestions of
metallic magnetism on the surface of SmB6 [19,20].
X-ray emission spectroscopy, which probes the local

electronic configuration of atoms, is a valuable discrimi-
nator of multivalent ions. The measurement involves two
coupled transitions: (1) an electron in a low-lying core
orbital is excited into the conduction band via absorption of
an x-ray photon, and (2) an electron from another orbital
decays to fill the hole, emitting a lower-energy x-ray
photon. The final state of the system is excited with respect
to the initial state. A schematic of the excitations studied in
our experiment is presented in Fig. 1(a). The removal of the
core electron from the 2p shell, corresponding to the LIII
absorption edge, requires an incident energy Ei ≈ 6720 eV,
the exact value of which depends on the 4f shell electron
occupancy. In intermediate-valent Sm compounds, x-ray
absorption spectroscopy (XAS) measurements yield two
peaks, split by 7 eV, that correspond to integer-occupancy
f5 and f6 configurations [26]. This is due to the short-lived,
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local nature of the core-hole excitation and its f-occu-
pancy-dependent Coulomb screening. One possible relax-
ation pathway is for an electron to decay from the 3d5=2 to
2p3=2 shell, emitting a photon with energy Ef ¼ 5636 eV
(the Lα1 emission line) that is independent of the 4f shell
occupancy.
We performed x-ray diffraction (XRD), partial fluores-

cence yield (PFY), and resonant x-ray emission spectros-
copy (RXES) measurements under pressure at the HPCAT
beam line at the Advanced Photon Source. The XRD
measurements were performed on a powder of crushed
single crystals of SmB6 [5] using a 29.2 keV x-ray beam.
For the inelastic measurements, a flux-grown 50 μm single
crystal was studied using a 35 μm diameter x-ray beam in a
diamond anvil cell sealed with a Be gasket. Approximately
hydrostatic pressure conditions were achieved using neon
as a medium, and manometry via ruby fluorescence
indicated typically 5% uncertainty in the pressure.
The PFY experiment consists of a measurement of the

intensity at fixed Ef as a function of scanned Ei. The
intensity is proportional to the absorption probability, but
the measured emission linewidths have the advantage of
being intrinsically sharper compared to standard XAS
measurements (compare to [26]). Because the x-ray absorp-
tion process represents an ejection of a photoelectron,
details of the absorption edge reflect the unoccupied
density of states. In SmB6, a large unoccupied density
of states due to a d-derived band leads to a peak structure
similar to that seen in other f-electron compounds. The
pressure dependence of Lα1-PFY scans across the LIII edge
are presented in Fig. 1(b). The presence of two prominent
peaks corresponding to a different integer f occupancy is
consistent with prior x-ray absorption and photoelectron
spectroscopy on SmB6 [25].
Quantitatively, the PFY intensity IPFYðEiÞ ¼

P
avNv

includes a contribution from each valence configuration v
well described by the sumofGaussian and sigmoid functions
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the ratio of the Gaussian and sigmoid amplitudes. Example
fits to the total intensity, as well as the contribution of each
valence, are shown in Fig. 1(b). The weighted ratio of the
amplitudes ð2a2 þ 3a3Þ=ða2 þ a3Þ yields the value of the
intermediate valence. As applied pressure increases, a2
decreases relative to a3, reflecting an increasing valence.
To get a complete picture of the energy dependence of

the resonant absorption-emission process, we also per-
formed RXES measurements, in which both Ei and Ef are
varied. Data from RXES scans at different pressures are
shown in Fig. 2 as a function of Ei and the transferred
energy Et ¼ Ei − Ef. For reference, a gray diagonal line

having constant Ef indicates the trajectory of the previously
discussed PFY measurements. The RXES line shape
resembles the PFY, broadened along Ei and Ef.
The RXES intensity I2DðEi; EtÞ is fit using the Kramers-

Heisenberg formula for photon-atom scattering [33,34]:

I2D ¼
Z

dϵNðϵÞΦ 1

π Γi
2
ð1þ x2Þ

1

π Γt
2
ð1þ y2Þ ; ð2Þ

where x¼ð2=ΓiÞðEi−E0−ϵÞ and y¼ð2=ΓtÞðEt−E0− ϵÞ
for transitions with energy E0. The unoccupied density of
states NðϵÞ is convolved with two-dimensional Lorentzian
broadening having full widths at half maximum Γi and Γt.
NðϵÞ follows the form of Eq. (1), and the total intensity is a
sum of two terms with spectral weight proportional to the
relative contribution of each valence configuration. The
amplitude Φ ∝ jhfjT2jiihijT1jgij2 is determined by the
transition probabilities between ground, intermediate,
and final states. Its value is approximately constant over
the relevant energies, although an asymmetry along Ei is
well described by assigning to Φ a skewness term
1þ ð2=πÞatanðλxÞ, with λ ≈ −0.3 [35].
The contribution from the 2þ peak in the RXES

spectrum clearly diminishes with increasing pressure.
The amplitudes from the fits to Eq. (2) support the
intermediate valence derived from our PFY analysis, and
such an interpretation of RXES data was also previously
established [33,37]. Figure 3 summarizes our findings,
including the pressure dependence of several important
energy scales. The valence at 10 GPa is 0.1 smaller than
determined by earlier XAS measurements [31,32]. The
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FIG. 1. (a) Schematic of Sm core-hole excitations probed by the
PFY and RXES measurements, including incident and emitted x
rays Ei and Ef . (b) Partial fluorescence yield data at different
pressures, normalized to the maximum value at the 3þ peak. The
peak attributed to the divalent configuration clearly decreases
with increasing pressure, but does not vanish. Individual valence
contributions to the peak-edge structure 32.9 GPa are indicated
by dashed lines and correspond to Eq. (1). Error bars denote an
uncertainty of 1 standard deviation.
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slope of the valence as a function of pressure is greatest
near 2.5, a behavior attributable to near degeneracy of the
divalent and trivalent configurations [38]. The splitting Δϵ
between absorption edges for each valence decreases from
8.5 eV to 6.5 eV between ambient pressure and 26 GPa,
reflecting less of a difference in screening between the two
configurations. The width Γi increases from 5 eV to 6 eV,
while the value for Γt remains constant at 2 eV. These
linewidths are consistent with those derived from studies of
other f-electron compounds [34].
These findings challenge conventional understanding of

intermediate valent insulators. The monotonic pressure
dependence of the valence in SmB6 is insensitive to both
the closing of the hybridization gap and sharp onset of
long-range magnetic order, and other energy scales are also
continuous through these transitions. This is remarkable
because both the Fermi surface and magnetic ground state
are expected to be determined by f-electron fluctuations, as
seen in other rare earth compounds. Most striking is that the
Sm valence in SmB6 not only never reaches 3þ, but
remains strongly intermediate valent at high pressures,
defying predictions [29,30,39,40]. The unusual electronic
configuration is surprisingly robust.

Fluctuations of the charge configuration of unpaired f
electrons affect the spin state, reducing the paramagnetic
response and impeding magnetic order [41]. Awell-known
example is Ce metal, which undergoes an isostructural
volume collapse under pressure that changes its valence
and suppresses the Curie-Weiss paramagnetic response
[42]. Both metallic and insulating Kondo lattice com-
pounds can be described by a periodic Anderson model,
a fact exploited in the classification of topological Kondo
insulators [2]. As a practical matter, although there are
many examples of metallic intermediate valent compounds,
whose designation overlaps with heavy fermion materials,
very few intermediate valent compounds exhibit electrical
insulating behavior down to low temperatures [43].
The archetypal intermediate valent insulator is SmS, in

which pressure-induced magnetic order and metallization
are associated with the onset of full 3þ valence. This material
exhibits a prominent first order transition in the lattice
constant at 1 GPa, which is coupled to a large jump in valence
from 2 to 2.7 [23,24]. Above 2 GPa, magnetic order sets in
[22] inside the intermediate valent regime, but the magnetic
phase does not occupy the entire volume until 5 GPa, when
the sample is nearly trivalent. A coincidence between volume
change, metallization, and valence change is observed also in
Sm, Tm, and Yb monochalcogenides [44,45].
The trend in pressure-tuned ground state is obeyed by

SmB6, as it becomes magnetically ordered below 12 K
[29,46] once the insulating gap closes by 10 GPa [30]. Yet
despite the similar phase diagrams of SmB6 and SmS, the
pressure dependence of the Sm valence is very different
(Fig. 3 inset), and our experiment shows that the incon-
sistency with integer valence in SmB6 under pressure is
more substantial than suggested previously [29,39]. The
root of this discrepancy lies in the pressure dependence of
the SmB6 lattice constant determined via XRD (Fig. 3),
which decreases smoothly as a function of applied pressure
[40] to values greater than 25 GPa [47] and does not
collapse. Indeed, the lattice of SmB6 may be considered
already collapsed, as the bulk modulus [47] is 3 times larger
than that of SmS [48].
A correspondence between lattice parameter and valence

is an established component of the intermediate valence
phenomenology [49]. It intuitively derives from the different
radii of the stable integer valent ions, which contract with
increasing valence. In SmB6, this rule has been inferred from
comparisons of XAS and magnetometry on chemically
substituted samples that demonstrate a relation between
lattice constant and valence [27,32]. It also appears to be
responsible for the unusual ambient-pressure negative coef-
ficient of thermal expansion [50] that is accompanied by a
valence decrease as the temperature is lowered [26]. Yet,
these arguments do not simply extend to the pressure data;
already by 10 GPa the experimentally determined lattice
constant is 4.05Å (Fig. 3), far smaller than the 4.115Å value
of hypothetical trivalent SmB6 derived from substitution
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FIG. 2. Comparison of RXES data (a)–(c) and fits (d)–(f) at
different pressures. With increasing pressure, the lower energy
peak associated with the divalent state is suppressed. Also clearly
evident are the resonances at constant Et. The gray lines denote
constant values of Ef corresponding to the fluorescence line.
Data are fit to Eq. (2) as described in the text. Intensities are
normalized to the maximum intensity at the 3þ peak.
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studies [27]. The failure of ion size alone to determine
valence is reminiscent of the limitations of simple promo-
tional models to describe gradual valence changes beyond
the Sm monochalcogenides [44], at which point it becomes
necessary to invoke hybridization to describe the intermedi-
ate valent state. The fact that SmB6 is already far from
integer valence at ambient pressure underscores that corre-
lations play an essential role in determining the electronic
state [4,51]. Our results highlight the need for new theo-
retical insight into why the SmB6 valence is sensitive to
temperature but less so to applied pressure, and what
underlying interactions are responsible for the metallization
and onset of magnetic order.
Finally, we address efforts to experimentally determine

the topological classification of SmB6. Because theoretical
calculations suggest that SmB6 is topologically nontrivial at
all experimentally relevant values of valence [3], pressure is
not expected to tune the material through a topological
transition until integer valence is achieved. In principle,
opening an energy gap at the Fermi level at any pressure
converts SmB6 into a topological insulator, and if the onset
of magnetic order could be decoupled from metallization,
a strain-engineered interface between magnet and

topological insulator could be used to stabilize exotic edge
states with potential use in future devices. In this light, we
suggest that recent observations of one-dimensional surface
transport [19] and unusual magnetotransport [20] could be
consistent with the existence of a strain-stabilized magnetic
surface on SmB6. Our results demonstrate that a surface
having strongly intermediate valence, as has been detected
spectroscopically [52], can support magnetic order.
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