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Self-organizing nanocheckerboards have been experimentally fabricated in Mn-based spinels but have
not yet been explained with first principles. Using density-functional theory, we explain the phase diagram
of the ZnMnxGa2−xO4 system and the origin of nanocheckerboards. We predict total phase separation at
zero temperature and then show the combination of kinetics, thermodynamics, and Jahn-Teller physics that
generates the system’s observed behavior. We find that the f011g surfaces are strongly preferred
energetically, which mandates checkerboard ordering by purely geometrical considerations.
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Experimental observation demonstrates intriguing nano-
scale compositional ordering in a variety of material alloys.
These include noble-metal-alloy nanocheckerboards [1–3],
BaTiO3-CoFe2O4 nanopillars [4], and an assortment of
manganite-spinel nanocheckerboards [5–9]. Nanoscale
phenomena are inherently difficult to treat with quantum
mechanics’ first principles, due to the prohibitive scaling of
electronic-structure methods. Previous theoretical studies
[10–14] used phase-field models [15,16] to simulate nano-
checkerboard formation. However, those models rely upon
coefficients chosen without first-principles justification. In
contrast, our work reveals the origin of nanocheckerboards
from first principles.
Here we examine the experimentally well-characterized

manganite spinels A2þMn3þ2 O2−
4 . These cooperative-Jahn-

Teller crystals, upon doping with certain non-Jahn-Teller
ions, organize into nanocheckerboards. Experiments
showed that high-temperature mixing, followed by slow
cooling, yields a spontaneously formed checkerboard
whose squares alternate tetragonal Mn-rich and cubic
Mn-poor phases. These checkerboards emerge from the
cross section of spontaneously aligned nanorods. Yeo et al.
[5] fabricated self-assembling nanocheckerboards from
ZnGa2O4 ðZGOÞ þ ZnMn2O4 ðZMOÞ, comprised of ∼4 ×
4 × 70 nm3 nanorods. Later work grew checkerboards with
nanorods over 700 nm long on a MgO substrate [6,7].
Checkerboards were later extended to other Mn-based
spinels, first MgMnxFe2−xO4 [8] and then the tunable-
sized checkerboards of Co0.6MnxFe2.4−xO4 [9]. The latter
are notable for a patterning that alternates ferro- and
paramagnetic phases, which yields potential for ultra-
high-density information storage.
We analyze the nanocheckerboard system

ZnMnxGa2−xO4, whose relative simplicity renders it a
minimal prototype. We sketch the main experimental
results of Ref. [5] in Fig. 1. ZGO is a cubic spinel, while
ZMO is a tetragonal spinel (c=a ¼ 1.14 [17]), which
immediately leads to some anomalous differences
between the experimental data and naive expectations.

First, room-temperature experiments reveal solid solutions
at non-negligible concentrations, despite the disparate
crystal structures of the end members, in violation of the
Hume-Rothery rules. Second, x-ray diffraction experiments
show a cubic structure up to 25% ZMO (and 75% ZGO),
whereas a non-negligible tetragonality would be expected
at this concentration, regardless of the origin of the
observed solubility. Third, in the region where ZMGO
phase separates, the experimental data show checkerboard
formations instead of traditional spinodal decomposition.
To address these issues, we compute the energetics of

ZnMnxGa2−xO4 using density-functional theory (DFT) as
implemented in the Vienna ab initio simulation package
(VASP) [18–21]. We use a plane-wave cutoff energy of
415 eV, the PW91 generalized gradient approximation
(GGA) functional [22,23], and projector augmented wave
based pseudopotentials [24]. All calculations are initialized
with ferromagnetic ordering for simplicity, a well-justified
approach for the Néel temperature of merely ≈20 K
[17,25,26]. We compute a phase diagram via a cluster
expansion [27] of the DFT energetics with Monte Carlo
simulations, as implemented in the Alloy Theoretic
Automated Toolkit (ATAT) package [28–31].
Both ZGO and ZMO crystallize in the spinel structure,

with nominal valences of Zn2þðGa;MnÞ3þ2 O2−
4 . Zn occu-

pies the tetrahedral (“A”) sites and Ga/Mn occupy the
octahedral (“B”) sites, with negligible inversion [32,33].
Therefore, our study focuses on the effect of Ga/Mn
occupation of the B sites. Each B-centered octahedron
shares edges with six others, which couples their anionic
distortions. ZGO forms a cubic spinel (space group Fd3̄m)
[33], while ZMO is a tetragonal spinel (space group
I41=amd) with significant distortion c=a ¼ 1.14 [17].
The T 0 of Fig. 1 (high-temperature fully mixed ZMGO)
has c=a ≈ 1.06 [5]. We have provided lattice constants
from the literature, and their DFT-calculated analogs, in
Supplemental Material (Table S1) [34]; DFT calculations
agree with experiment. ZMO’s sizable tetragonal distortion
is due to the Jahn-Teller (JT) effect in the Mn3þ ions, where
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the d4 configuration in a high-spin octahedral environment
causes the eg orbitals to break symmetry by a tetragonal
distortion. This orbital ordering leads to a martensitic
cubic-to-tetragonal transition in a variety of crystals,
including spinels [39–43]. For consistency, we take
[001] to be the JT-distorted direction.
Experiments, summarized in Fig. 1, show solid solutions

for xMn ≤ 0.25 and xMn ≥ 0.85. Yet the cubic and strongly
tetragonal crystal structures of the end members are
expected to be immiscible: Placing a non-JT octahedron
in a tetragonal JT-active environment, and vice versa, costs
energy. Our DFT calculations quantitatively verify the
qualitative Hume-Rothery rules: We generated 192 super-
cells (≤ 42 atoms) and then fully relaxed the structures.
(See Supplemental Material [34] for further calculation
details.) Figure 2(a) shows their formation energies, dem-
onstrating that mixing the disparate crystal structures incurs
an energy cost [44]. A ground-state search using the cluster
expansion (via the aforementioned ATAT package)
revealed no lower-energy supercells. Therefore, the zero-
temperature ground state of ZMGO is actually phase
separation into bulk ZGO and ZMO, a conclusion absent
from previous non-first-principles analyses [11–14]. There
is no chemical or physical reason to believe that ZGO and
ZMO should mix at anything but elevated temperatures.
To further verify this, we computed a phase diagram via

a cluster expansion (CE), using the aforementioned ATAT
package. (See Supplemental Material [34] for extensive
calculation details, as well as the effect of CE short-
comings.) As shown in Fig. 2(b), the zero-temperature
stable phases are immiscible bulk ZGO and ZMO. In fact,
the observed miscibility at xMn ≤ 0.25 and xMn ≥ 0.85 is
unreasonable at all but extreme temperatures.
We therefore attribute the anomalous miscibility to

kinetic limitations, i.e., diffusion constraints. This is

corroborated by the experimental observation that slower
cooling (i.e., better diffusion) leads to larger checkers (i.e.,
less miscibility) [8,9]. In fact, kinetics are the obvious origin
of the miscible T 0 state observed upon rapid quenching
(shown in Fig. 1). DFT’s prediction for the T 0 state for
xMn ¼ 0.5 (taken as the mean of all calculated structures)
agrees well with the experimental measurements. For
example, DFT predicts c=a ¼ 1.07, comparable with the
experimental value of c=a ≈ 1.06. (See Supplemental
Material [34] for all data.) Similarly, kinetic limitations
must cause the apparent solubility of xMn ≤ 0.25 and
xMn ≥ 0.85. For example, if diffusion essentially freezes
by, e.g., 900 K, the system cannot separate into 100/0%Mn
mixtures and will remain a high-entropy frozen solid
solution. Unfortunately, quantitatively predicting kinetics
(including checker size) requires detailed knowledge of the
diffusion mechanisms, coupled with complex JT lattice
dynamics, which is beyond the scope of this Letter.
Having explained that the apparent solubility is due to

kinetics, we must address the second anomaly, the exper-
imental observation of a cubic structure for xMn ≤ 0.25. In
contrast, DFT predicts a tetragonal structure (c=a ≈ 1.03
for all calculated structures at xMn ¼ 0.25) due to the
cooperative Jahn-Teller effect.
We propose that the cubic structure of the Mn-poor

phase is caused by noncooperative JT distortions at finite
temperatures. It is well known that, as in many spinels,
ZMO undergoes a phase transition to a cubic spinel
above approximately 1323 K, due to noncooperative JT

FIG. 1 (color online). Sketch of experimental results presented
in Ref. [5]. For xMn ≤ 0.25 a single-phase cubic structure (C)
appears, while for xMn ≥ 0.85 it is a single-phase tetragonal
structure (T). For intermediate concentrations, a single-phase
tetragonal structure (T 0) is observed upon rapid quenching (the
high-temperature phase), while slower cooling generates phase-
separated nanocheckerboards with (011) and ð011̄Þ interfaces.
Arrows in the tetragonal regions show the tetragonally elongated
direction. The concentrations on the abscissa are those for which
data were reported in Ref. [5]. The concentrations within the
nanocheckerboards were not reported as being measured directly.

(a)

(b)

FIG. 2 (color online). (a) Energies of formation of 192
ZnMnxGa2−xO4 supercells. (b) Phase diagram of mixed ZGO
and ZMO, using ATAT’s EMC2 code. The stable phases (with
respect to a semi-grand-canonical ensemble, where xMn may
vary) are shown at varying temperatures. The phases are marked:
cubic (C), tetragonal (T), phase-separated (Cþ T), and high-
temperature fully mixed tetragonal (T 0).
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distortions (each octahedron distorting in a random direc-
tion) [32,39,40]. The transition temperature scales with
doping: Within mean-field theory, it is approximately linear
with doping [45]; experimentally, a variety of spinels
transition at Tc ≈ 9260ðc=a − 1Þ K [40], where c=a is
the tetragonal distortion induced by the cooperative dis-
tortion [46]. As illustrated in Fig. 3, both these trends imply
that, at room temperature, structures of x≲ 0.25 are cubic
due to this transition, while x≳ 0.25 are tetragonal. Similar
“critical concentrations” of JT ions have been documented
in the literature [45,47]. This is also consistent with the
conclusion of Noh et al. [48] that, although xMn ¼ 0.25 has
an XRD pattern of a cubic spinel, it has a rather large JT
splitting of ∼0.7 eV, i.e., a high-spin electronic configu-
ration, which leads to JT distortion. (See Supplemental
Material [34] for detailed analysis of the reliability of
GGA’s high-spin prediction.) Therefore, low-temperature
measurements should reveal DFT’s tetragonally distorted
structure for x ≤ 0.25.
Therefore, the cubic structure is due to the high-entropy

noncooperative distortion. We should note that these finite-
temperature Jahn-Teller lattice dynamics are expected to
enhance miscibility, as noted by other experiments [49].
For example, whereas the experiment places the boundaries
at 25%/85% Mn, our phase diagram [Fig. 2(b)] shows that
ZMO is more tolerant of Ga doping than ZGO of Mn
doping. This discrepancy is likely due to the lack of
noncooperative distortions in the cluster-expansion model,
although a quantitative treatment is beyond the scope of this
Letter. However, this alone would not suffice to cause
appreciable solubility near room temperature.
Now we turn to 0.25 < xMn < 0.85, where slowly

cooled samples phase separate on a diffusion-limited scale.
We seek to explain how this leads to nanocheckerboards
rather than traditional spinodal decomposition. We calcu-
late the energy of joining a slab of ZGO to a slab of ZMO
along a particular surface; lower energies indicate preferred
interface directions [50]. Figure 4(a) shows the energies of

formation for various slab thicknesses. (Larger thicknesses
are inaccessible due to large, convergence-challenged
supercells.) In agreement with experiment, DFT prefers
the f011g surfaces. The energy relative to the next-
preferred surface is about 10 meV=B (160 meV per cubic
unit cell) at only 1.5 nm and presumably larger for the 4 nm
nanocheckerboards.
Because of symmetry, only five directions are calculated

directly. We search formation energies of multilayer slabs

of thickness t oriented in an arbitrary direction ~k by
performing an expansion in the symmetry-adapted (tetrago-
nal) harmonics, a standard group-theory methodology
[51,52]. It is apparent from Fig. 4(b) that the total formation

energy can be approximated by Eð~k; tÞ ¼ A½cað~kÞþ
tcvð~kÞ�, where A is the cross-sectional area and ca and
cv are constants. We perform an expansion of ca and cv in
the four lowest-order harmonics via a least-squares fit for

the five calculated values of ~k. (Fitting data appear in

FIG. 3 (color online). Phase diagram for the noncooperative
Jahn-Teller transition in spinels. DFT calculates the distortion
(left axis) of our ZMGO structures [as in Fig. 2(a)] at 0 K.
The critical temperature for the tetragonal-to-cubic transition
(right axis) is obtained based on the fitting Tc ≈ 9260ðc=
a − 1Þ K, empirically accurate for a variety of spinels [40].
Therefore, at room temperature, xMn ≲ 0.25 is cubic.

(a)

(b)

(c)

FIG. 4 (color online). (a) Formation energies of ZGO/ZMO
slabs layered in the given direction, normalized per B site, plotted
against the average thickness t of the ZGO and ZMO slabs. The
t → ∞ limit corresponds to the contribution of B sites far from
the interface; finitely valued t averages the contribution of
all sites, including those near the interface. See also Figs. 5(b)
and 5(c). (b) The same, multiplied by the number of B sites (N)
and divided by the interface area (A), giving a per-area normali-
zation. (c) Fitting cubic (C) and tetragonal (T) domains with a
coherent interface along f011g surfaces. Arrows show the
tetragonally elongated direction in corresponding domains.
Geometrically, coherent f011g C-T interfaces require a slight
angular rotation (shown) between adjacent C and T regions. The
consequent zigzag interface can match either an extended
equivalent domain (illustrated on the left of the subfigure) or a
commensurate domain (on the right), forming a checkerboard
structure. This generates tetragonal domains rotated by 90° and
cubic domains rotated by θ (see the text).
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Supplemental Material [34].) We thus confirm that (011),
and equivalently ð011̄Þ, are the lowest-energy surfaces.
Hence, physics dictates that, when our system coherently

mixes cubic and tetragonal phases, it forms (011) and ð011̄Þ
interfaces. Now pure geometry dictates checkerboard
configurations for coherent interfaces. As shown in
Fig. 4(c), due to bent angles at the interfaces, the only
configuration that retains a coherent lattice is the checker-
board formation. Experiments observed that alternating
cubic phases are rotated by a few degrees, while alternating
tetragonal phases are rotated by 90° [5,6,9]. The origin of
these measurements appears clearly in Fig. 4(c), with the
cubic-phase angle of rotation θc ¼ π=2 − 2tan−1a=c. This
agrees with measured values within < 1° (see data in
Supplemental Material, Table S2 [34]). In this, our checker-
boards are directly related to the CoPt cubic-tetragonal
nanostructures [1,10] and other lattice-induced interface
rotations [53].
Whence does the f011g preference originate? Previous

work showed the importance of both strain and local ionic
distortions (i.e., ~k ¼ 0 phonons) to the Jahn-Teller effect
[54]. Our slabs’ formation energy consists of strain energy,
due to biaxial lattice matching, and contact energy, due to
local ionic distortions and local binding energies.
Specifically, for two slabs of thickness t joined in direction
k̂, we write

Eformation ¼ NEstrainðk̂; tÞ þ AEcontactðk̂; tÞ; ð1Þ
where the units now ensure that the latter two E terms
converge for t → ∞. As shown in Fig. 5(a), the strain
energy can be computed directly by relaxing ionic coor-
dinates for ZGO and ZMO separately, with strained lattice
vectors (the “strained bulk” calculation). Then the contact
energy is simply the difference between the formation
energy and the strain energy. (Detailed equations appear in
Supplemental Material [34].)
These energies are shown in Figs. 5(b) and 5(c). We note

that f111g and especially f011g have negative contact
energies, meaning the layered-slab heterostructure is more
stable than the strained ZGO and ZMO separated bulk.
Hence, the local ionic distortions couple beneficially to the
lattice strain; i.e., atomic rearrangements partially alleviate
the energy penalties of lattice strain. This is predominantly
concentrated in the breathing and tetragonal-distortion
local modes (q1 and q3 in the notation of Ref. [55]).
Remarkably, the contact energy does not converge in the
accessible thicknesses, due to the long range of the Jahn-
Teller effect. Rather, even a remarkable distance from the
surface, interoctahedron coupling leads to intracellular
atomic displacement. Therefore, the f011g preference
originates in a beneficial coupling between strain and
long-range atomic displacements (contrary to previous
non-first-principles work neglecting the latter [10–14]).
In conclusion, we have presented the physics of nano-

checkerboards based on first-principles calculations. We

established that the thermodynamic ground state is com-
plete phase separation. The incomplete separation origi-
nates in diffusion limitations, leading to nanoscale phase
domains. We explained the observed cubic crystal structure
at xMn ¼ 0.25 based on noncooperative Jahn-Teller dis-
tortions at room temperature. Therefore, although ZMGO’s
ground state is bulk incoherent, the diffusion-limited
structure is bulk coherent (using the terminology of
Ref. [56]). This kinetically driven bulk coherence leads
to phase separation of cubic and tetragonal phases along
f011g surfaces, which we showed from first principles.
This, in the presence of kinetic constraints, automatically
leads to checkerboards, based on pure geometry. The
preference for f011g surfaces originates in beneficial
coupling between local distortions and lattice strain.
Further quantitative understanding will require robust
models for the Jahn-Teller effect in doped materials at
finite temperatures.
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(a)

(b) (c)

FIG. 5 (color online). (a) Three types of ZMGO structures used
to decompose slab formation energies. Black arrows represent
cross-sectional biaxial strain, calculated by fully relaxing the
heterostructure. All calculations use periodic boundary condi-
tions. (b), (c) Slab formation-energy decomposition, as defined in
the text. Motivation for unit choice is described in the text; for
comparison, note that a cubic unit cell has 16 B sites and a (100)-
cross-sectional area of approximately 74 Å2. Negative contact
energy, as in the f011g surface, indicates energetic preference for
the layered-slab heterostructure over the strained bulk.
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