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Atomically precise superlattices involving transition-metal oxides provide a unique opportunity to engineer
correlated electron physics using strain (modulated by choice of substrate) and quantum confinement (controlled
by layer thickness). Here we use the combination of density-functional theory and dynamical mean-field theory
(DFT+DMFT) to study Ni Eg d-orbital polarization in strained LaNiO3/LaAlO3 superlattices consisting of four
layers of nominally metallic NiO2 and four layers of insulating AlO2 separated by LaO layers. The layer-
resolved orbital polarization is calculated as a function of strain and analyzed in terms of structural, quantum
confinement, and correlation effects. The effect of strain is determined from the dependence of the results on
the Ni-O bond-length ratio and the octahedral rotation angles, quantum confinement is studied by comparison
to bulk calculations with similar degrees of strain, and correlation effects are inferred by varying interaction
parameters within our DFT+DMFT calculations. The calculated dependence of orbital polarization on strain
in superlattices is qualitatively consistent with recent x-ray-absorption spectroscopy and resonant reflectometry
data. However, interesting differences of detail are found between theory and experiment. Under tensile strain,
the two inequivalent Ni ions display orbital polarization similar to that calculated for strained bulk LaNiO3 and
observed in experiment. Compressive strain produces a larger dependence of orbital polarization on Ni position,
and even the inner Ni layer exhibits orbital polarization different from that calculated for strained bulk LaNiO3.
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I. INTRODUCTION

Much of the interesting physics of transition-metal oxides
arises from the unusual properties of strongly interacting
electrons in partly occupied transition-metal d-shells. A key
property of a partly filled d-shell is orbital polarization, the
relative occupancy of different d-levels [1]. Interest in the
possibility of using “orbital engineering” to control orbital
polarization and thereby obtain desired electronic properties
continues to grow given the improving capability of syn-
thesizing atomic-scale superlattices involving transition-metal
oxides [2,3]. Superlattices allow for metastable structures
with a range of lattice strain and many permutations of
layerings, most of which could not be achieved by standard
bulk crystal growth methods. Much attention has focused on
superlattice systems based on rare-earth nickelates following
the theoretical prediction [4,5] that complete orbital polar-
ization of one of the Ni d-multiplets might be realized in
superlattices composed of alternating layers of LaNiO3 and an
insulating spacer layer, and that the cupratelike band structure
implied by the complete orbital polarization might lead to
high-Tc superconductivity in the superlattice. More advanced
density-functional theory and dynamical mean-field theory
(DFT+DMFT) calculations later suggested that this scenario
will not be realized [6], and this theoretical prediction is
consistent with current experimental observations [7].

Measuring orbital polarization is challenging, especially in
artificially synthesized superlattices where the small volumes
of typical samples mean that many types of experiments
are not practicable. However, recent experimental progress
in x-ray absorption and resonant reflectivity measurements
have provided very interesting information [7–9]. Connecting

these experiments to theory to achieve a comprehensive
understanding of the factors involved in controlling the orbital
physics is an important task.

Theoretical studies of orbital polarization in nickelate
heterostructures and films have appeared. Methods used
include model system calculations, DFT, DFT+U, and the
combination of DFT and the GW approximation. Most
studies, however, have used the combination of DFT+DMFT.
Effects that have been analyzed include quantum confinement
[4–6,10,11], strain [5,6,10–13], local chemistry [12], and the
consequences of charge doping [14,15].

The energy window used to define the correlated orbitals
is an important issue in beyond DFT calculations, such as
the DFT+DMFT methodology [16]. The general consensus
is that for the rare-earth nickelates, the correlated subspace
should be defined in terms of atomiclike d-orbitals defined
using Wannier or projector techniques applied to a wide energy
range spanning at least the full p-d manifold [6] (this is also
the choice made in standard DFT+U implementations). As
noted by Peil et al. [13], if one wishes instead to define the
correlated manifold in terms of the near-Fermi-surface p-d
antibonding bands, the interaction parameters must be strongly
renormalized.

A key finding of the published theoretical work is that
Hund’s coupling acts to suppress orbital polarization down to
a level substantially below the value predicted by standard DFT
[6,13]. However, DFT+U calculations in bulk LuNiO3 demon-
strated that a Jahn-Teller distorted structure is only slightly
higher in energy [17] than the bond disproportionate ground
state, and a sufficiently large (� 4%) tensile (cubic-tetragonal
with the in-plane bonds being longer) strain stabilizes the
Jahn-Teller distorted structure [18]. The effect of more modest
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tensile strain on the Ni-O bond-length ratio and the octahedral
rotation was studied for tensile-strained bulk LaNiO3 [13],
and the calculated orbital polarization was found to be in good
agreement with the x-ray experiment [13].

This paper is motivated by recent tour-de-force measure-
ments [7,9] of orbital polarization of the two inequivalent Ni
sites (i.e., inner and outer Ni sites) in (LaNiO3)4/(RXO3)4

superlattices comprised of alternating layers of four unit cells
of LaNiO3 and four unit cells of an insulating spacer layer
RXO3, with R = La,Dy,Gd and X = Al,Ga,Sc. By varying R

and X, the in-plane lattice constant could be adjusted to provide
either tensile or compressive biaxial strain on the LaNiO3

material while differences between orbital polarization of the
Ni ion adjacent to the RXO3 and orbital polarization of the
Ni ion surrounded by other Ni ions provides some insight into
chemical and quantum confinement contributions.

We build on the previously introduced theoretical tech-
niques to ask the following question: can a state-of-the-art
DFT+DMFT calculation based on a realistic crystal structure
account for the essential features of the experiment? We study
(LaNiO3)4/(LaAlO3)4 superlattices with four NiO2 layers
alternating with four AlO2 layers. We incorporate the effects of
strain (implemented in the experiment by changing the LaAlO3

to other wide-gap perovskite insulators) by fixing the in-plane
lattice constant. We compare the DFT+DMFT calculations
to pure DFT calculations, and within the DFT+DMFT
calculations we consider different values of the correlation
parameters. We estimate quantum confinement effects by
comparing our results to those obtained on strained bulk
LaNiO3.

The rest of this paper is organized as follows. In Sec. II we
present the specifics of the calculations, in Sec. III we present
our calculated orbital polarization, and in Sec. IV we show
the one-particle spectra. In Sec. V we discuss the impact of
structure and quantum confinement on orbital polarization, and
in Sec. VI we delineate the consequences of the many-body
interactions. Section VII contains the conclusion.

II. MODEL AND METHODS

We study superlattices consisting of four layers of LaNiO3

alternating with four layers of the wide-band-gap insulator
LaAlO3 with the alteration along the (001) direction of the
ideal cubic perovskite structure; we refer to the resulting
structures as (001) (LaNiO3)4/(LaAlO3)4 superlattices. We
impose tetragonal symmetry, meaning that the two in-plane
lattice constants a are equal and the lattice vectors are at right
angles to each other and to the out-of-plane lattice vector. We
allow for rotations and tilts of the NiO6 and AlO6 octahedra;
this doubles the unit cell in-plane, though the combination of an
in-plane translation and a rotation maps one NiO6 octahedron
onto the other. The four LaNiO3 layers come in two equivalent
pairs. We denote the Ni in the outer (closer to Al) layer as Ni
B and the Ni in the inner layer as Ni A.

We simulate strain by varying the in-plane lattice constant,
and we define tensile (compressive) strain as an in-plane
lattice constant that is larger (smaller) than the mean Ni-Ni
distance a0 calculated for bulk LaNiO3; quantitatively, (in-
plane) strain is (a − a0)/a0. The theoretical a0 value obtained
by performing a structural relaxation within the generalized

gradient approximation (GGA) methodology is 3.87 Å and
the measured equilibrium volume used to define strain in the
experiment is 3.838 Å [7].

In the first step in our calculations, we use DFT to relax
all internal coordinates and the (001) axis lattice parameter
under the assumption of tetragonal symmetry and fixed strain,
meaning that the in-plane lattice constants are fixed at definite
values and constrained to be at right angles. (We thus neglect
the small monoclinic distortion occurring in bulk LaNiO3;
the effects of this distortion are considered in Ref. [13].) The
structural relaxation of atomic positions is performed using
the Vienna Ab-initio Simulation Package (VASP) [20,21], a
plane-wave DFT code based on the projector augmented wave
formalism [22]. The exchange-correlation potential is taken
to be the spin-polarized generalized gradient approximation
(s-GGA) using the Perdew-Burke-Ernzerhof (PBE) functional
[23], and in our calculations the ground state is ferromagnetic.
The GGA is used for relaxations as opposed to GGA+DMFT
due to the massive savings in computational cost, in addition
to current technical constraints for computing forces. The
structural relaxation is converged if the atomic forces of all
atoms are smaller than 0.01 eV/Å. We note that for physically
relevant U � 5 eV, DFT+U relaxation calculations based
on spin-polarized GGA or non-spin-polarized GGA wrongly
produce the bond disproportionate structure for LaNiO3 even
at ambient pressure [16,24]. A k-point mesh of 8 × 8 × 1 is
used, and the plane-wave energy cutoff Ecut is set to be 600 eV.
Note that only one kz point is sufficient as the supercell is
enormously elongated in the z direction; we confirmed (not
shown) that an 8 × 8 × 2 k-mesh relaxes to an essentially
identical structure [∼0.1% changes to the octahedral lc/ la
ratio (see the definition in the caption to Fig. 5) and ∼1%
changes to rotation angles].

We specify the rotation patterns for a given structure using
Glazer notation [25,26]. Experimentally, bulk LaNiO3 has a
rhombohedral unit cell (space group R3̄c, Ref. [27]) with the
NiO6 octahedral rotation of the a−a−a− pattern. The a−a−c+

pattern is also observed for nickelates with a smaller rare-earth
ion than La [28]. In our calculations, for strained bulk LaNiO3

on a cubic substrate we find the a−a−c− pattern. Our strained
LaNiO3 superlattice shows asymmetric behavior depending
on the sign of strain. Under compressive strain, the relaxed
structure exhibits the a−a−c− pattern of the NiO6 octahedral
rotation similar to strained bulk, while the a−a−c+ pattern
becomes stable under tensile strain.

For each relaxed structure, we use the generalized
gradient approximation plus dynamical mean-field theory
(GGA+DMFT) to calculate the electronic structure. In these
calculations, we use the spin-unpolarized form of the GGA-
PBE functional and constrain the DMFT calculations to the
paramagnetic phase; this is appropriate since no magnetism has
been observed in the system of experimental interest [7,29,30].
The correlated subspace is taken to be the atomiclike Ni
d-orbitals defined by a standard maximally localized Wannier
function construction [31] based on a wide energy window
spanning the full 12 eV energy range of the Ni3d–O–2p

band complex. We follow previous work [16,17,24] and
rotate the orbital quantization axis on each Ni site to the
direction that minimizes the off-diagonal components of the
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FIG. 1. (a) The crystal structure of the (LaNiO3)4/(LaAlO3)4

superlattice at compressive (−3.1%) strain. La (green), Ni (gray),
Al (blue), and O (red) atoms are shown. Both the inner-layer Ni
(Ni A) and the outer-layer Ni (Ni B) are also denoted. The two Ni
(A and B) layers (enclosed by a black rectangle) are zoomed in at
(b) and (c). (b) The zoom-in structure of the two Ni layers. Here, lc
denotes the out-of-plane Ni-O bond length, and la means the in-plane
Ni-O bond length. The blue arrows indicate the local coordinates of
Wannier orbitals used in DFT+DMFT calculations. The local axis
almost coincides with the Ni-O bonding axis. (c) The top view of
the two Ni layers (enclosed by a black rectangle) in (a) showing the
octahedral rotation about the normal axis. (d) The crystal structure
of the (LaNiO3)4/(LaAlO3)4 superlattice at tensile (2.6%) strain. All
structure figures are generated using the VESTA program [19].

local Hamiltonian within each Ni subspace. As a result, the
off-diagonal components of the hybridization function are also
minimized. This direction is approximately aligned to the local
Ni-O octahedral axes [see Fig. 1(b) for these quantization
axes]. The filled t2g orbitals are treated using a Hartree-Fock
approximation, while the full dynamics of the eg orbitals is
considered, as in our previous studies [16,17,24]. We have used
the continuous-time quantum Monte Carlo impurity solver
[32,33], and only the diagonal hybridization function is kept
during the Monte Carlo run for an efficient sampling.

We adopt rotationally invariant Slater-Kanamori interac-
tions within the Ni d correlated subspace. The interactions
are parametrized by a Coulomb repulsion U , a Hund’s
coupling J , and a double-counting correction U ′. Therefore,
the multiorbital Hamiltonian treated in this paper is given by

Ĥ = U
∑
i,α

n̂iα↑n̂iα↓ + (U − 2J )
∑
i,α �=β

n̂iα↑n̂iβ↓

+ (U − 3J )
∑

i,α>β,σ

n̂iασ n̂iβσ

+ J
∑
i,α �=β

(ψ̂†
iα↑ψ̂iβ↑ψ̂

†
iβ↓ψ̂iα↓ + ψ̂

†
iα↑ψ̂iβ↑ψ̂

†
iα↓ψ̂iβ↓),

(1)

where i is the Ni atom index, α is the d orbital index, and σ is
the spin. The details of solving the above Hamiltonian within
DMFT are explained in our previous paper [16]. Our previous
work [16,24] showed that U = 5 eV, U ′ = 4.8 eV, and J =

1 eV provided the best fit to the structural and metal-insulator
phase diagram across the rare-earth nickelate family. In this
paper, we use these values but consider J = 0.7 eV as well
as J = 1.0 eV to provide insight into the J dependence, since
the value of J was previously shown to be important for the
quantitative value of orbital polarization [6,13].

The main quantity of interest in this paper is orbital polar-
ization, P . A precise definition is required, since the values
obtained depend on the way the d orbitals and polarization are
defined. Here we adopt the definition of P used in Ref. [7],
with the d orbitals defined as the rotated Wannier orbitals |Wa

eg
〉

discussed above, and a = 3z2 − r2 or x2 − y2 denoting the eg

orbitals of main interest here. The orbital occupancies are then
the diagonal elements of the occupancy matrix

naa
eg

= T

Nk

∑
iωn,k

∑
(l,l′)∈w

〈
Wa

eg

∣∣ψkl

〉
Gk

ll′(iωn)
〈
ψkl′

∣∣Wa
eg

〉
, (2)

Ĝk(iωn) = 1

(iωn + μ)Î − Ĥ KS
k − P̂

†
cor · �̂d (iωn) · P̂cor

, (3)

where Ĥ KS
k is the Kohn-Sham Hamiltonian at the k point

in the Brillouin zone, ψkl is the corresponding Kohn-Sham
eigenfunction with band index l, �d is the self-energy for the
Wannier d orbitals, and P̂cor is a projection operator defined
to downfold to the correlated d subspace. ωn is the Matsubara
frequency and T is the temperature. Within the GGA, naa

eg
is

obtained by inserting �d = 0.
Orbital polarization P is then defined in terms of the hole

density per spin ha = 1 − naa
eg as

P =
(

4

natomic
eg

− 1

)
(X − 1)

(X + 1)
(4)

with X = h3z2−r2
/hx2−y2

, and natomic
eg

is the occupation value
for the atomiclike Wannier function, which we set to 1.0 for
consistency with Ref. [7]. Thus positive P means the lower
relative occupancy of the 3z2 − r2 orbital.

III. RESULTS: ORBITAL POLARIZATION

Figure 2 shows our main results: orbital polarization P

computed for the superlattice and for bulk LaNiO3 and
compared with experimental data. Our results for bulk LaNiO3

[panel (c)] are very similar to those presented by Peil et al. [13].
The GGA results agree almost exactly under both tensile and
compressive strain. The GGA+DMFT results are consistent
given the difference in parameters (Peil et al. considered
U = 8 eV and J = 1 eV, whereas we consider U = 5 eV and
J = 0.7 eV); the increase in polarization due to the increase
in U is almost compensated by the decrease in polarization
due to the increase in J . The close correspondence of our DFT
and DFT+DMFT (allowing for differences in U ) results to
those of Peil et al. shows that our neglect of the monoclinic
distortion is justified.

We see that both the GGA and the GGA+DMFT calcula-
tions for superlattices [panels (a) and (b)] are in reasonable
qualitative correspondence with experiment in terms of both
the order of magnitude of the change over the interesting strain
range and the sign of the difference between polarizations of
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FIG. 2. Orbital polarization P [Eq. (4)] as a function of biaxial
strain for the two inequivalent Ni sites of the 4/4 LaNiO3/LaAlO3

superlattice [panels (a) and (b)] and for strained bulk LaNiO3

[panel (c)] computed using paramagnetic GGA+DMFT. Interaction
parameters of U = 5 eV and J = 0.7 eV [panel (a)], U = 5 eV and
J = 1 eV [panel (b)], and U = 5 eV and J = 0.7/1.0 eV [panel (c)]
are used. Paramagnetic pure GGA results are also presented, as are
experimental data (black empty dots, dashed lines) obtained from
Ref. [7].

the inner and outer Ni layers. Consistent with experiment,
all calculations indicate that tensile strain increases orbital
polarization (relative occupancy of the d3z2−r2 orbital) while
compressive strain decreases it. Also consistent with experi-

ment, the calculations indicate that at any value of the strain,
the orbital polarization of the A (inner layer) site is less than
that of the B (outer layer) site, meaning that the inner layer
Ni ion has a lower occupancy of the x2 − y2 and a higher
occupancy of the 3z2 − r2 orbital than does the outer layer Ni
ion.

The observed change of P with strain in the bulk material
[Fig. 2(c)] may be qualitatively understood as a consequence
of the antibonding nature of the near-Fermi-surface bands.
Considering, for example, tensile strain, the increase in la
reduces the hybridization of the planar Ni orbital to the
surrounding oxygens, thus lowering the energy of the x2 − y2

derived band, decreasing the density of x2 − y2 holes, while
the concomitant decrease in lc conversely increases the
hybridization to the 3z2 − r2 orbital, increasing the density
of 3z2 − r2 holes.

While all of the calculations are qualitatively consistent, in-
teresting quantitative differences occur. The GGA calculations
predict a stronger dependence of orbital polarization on strain
and on the Ni site, and a stronger change across zero strain,
than do the GGA+DMFT calculations, with the difference
between GGA and GGA+DMFT being larger for larger J .
This is an example of the physics discussed in Ref. [6]: the
electronic configuration of the Ni atoms is closer to d8L̄ than to
d7, so as Hund’s coupling is increased, the probability that the
Ni is in the high-spin d8 state increases, and in the high-spin
d8 state both eg orbitals are occupied so orbital polarization is
suppressed. However, as we shall show below, the details of
the J dependence of different aspects of the strain dependence
is somewhat unexpected.

IV. RESULTS: THE ONE-PARTICLE SPECTRA

Orbital polarization P is directly related to the change of
the d-orbital resolved one-particle Green’s function [Eq. (2)].
In this section, we show the d-orbital resolved density of
states (DOS) computed for the LaNiO3/LaAlO3 superlattices.
First Fig. 3 displays the DOS computed within the GGA for
the LaNiO3/LaAlO3 superlattice (Ni A: middle panel, Ni B:
bottom panel), also compared to the bulk LaNiO3 case (top
panel). The most compressive strain (−3.1%) case is shown
for both bulk and superlattice structures. Both the d3z2−r2

orbital (the black line) and the dx2−y2 orbital (the red line)
are depicted. Under the compressive strain, the dx2−y2 orbital
is strongly hybridized with O p orbitals and as a result the
dx2−y2 hole density is more enhanced than the d3z2−r2 hole
density, as shown in the bulk DOS (Fig. 3, top). The superlattice
DOS (middle and bottom panels) shows a relatively narrow
bandwidth (especially for the d3z2−r2 orbital) compared to
the bulk, and the spectra exhibit a spiky feature due to the
large unit cell. The dx2−y2 DOS is rather similar regarding
both Ni A (middle panel) and Ni B (bottom panel) layers and
also compared to the bulk dx2−y2 DOS. However, d3z2−r2 DOS
varies noticeably between Ni A and Ni B layers showing the
enhanced (reduced) hole density for the Ni B (Ni A) layer
compared to the bulk. We attribute this result to the structural
and quantum confinement effects, as will be shown in the next
section.

Figure 4 shows the d-orbital resolved one-particle spectra
A(ω) computed within GGA+DMFT for the LaNiO3/LaAlO3
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FIG. 3. The d-orbital resolved density of states (DOS) computed
within the GGA for bulk LaNiO3 (top panel) and the LaNiO3/LaAlO3

superlattice Ni A (middle panel) and Ni B (bottom panel). The
compressive strain (−3.1%) is applied for both bulk and superlattice.
The black line denotes the d3z2−r2 orbital and the red line represents
the dx2−y2 orbital.

superlattice (Ni A: top panel, Ni B: bottom panel). The strain
effect is imposed from the most compressive [−3.1% (top
figure)] strain, the near-zero [−0.93% (middle figure)] strain,
and to the most tensile [3.1% (bottom figure)] strain. Compared
to the bare GGA DOS, the GGA+DMFT spectra show the
renormalization effect near the Fermi energy (ω = 0) and
also broad Hubbard bands at higher energies. One should
note that GGA+DMFT spectra (E = EF ) at −3.1% strain
(Fig. 4, top figure) does not correspond to the GGA DOS
(E = EF ) at the same strain (Fig. 3) since the real part of the
self-energy effectively shifts the band structure (see Fig. 9).
As the strain changes from compressive to tensile, the d3z2−r2

hole density increases for both Ni A and B layers as expected
from the enhanced hybridization effect. And the outer Ni B

layer exhibits the higher hole density compared to the inner Ni
A layer, consistent with the orbital polarization data.

V. ANALYSIS: STRUCTURAL EFFECTS

In this section, we analyze the relation between the
structural distortions induced by strain and orbital polarization.
We begin with Fig. 5, which shows the calculated strain
dependence of the octahedral distortion lc/ la (ratio of apical
to in-plane Ni-O bond lengths). The dashed line with open
symbols shows that for bulk LaNiO3, as expected, an increase
in the planar bond length (tensile strain) leads to a decrease
in the c-axis bond length, and vice versa. The slope of the
lc/ la curve implies that the bulk material has a calculated
Poisson ratio ν = −(δlc/δla)/(2 − δlc/δla) of roughly 0.25
[δlc/δla = δ(lc/ la)/δ(εx) + 1, where εx is the strain in the x

direction, and note that the octahedral bond lengths do not
correspond exactly to changes in lattice constants because the
octahedral rotations also vary].

A small anomaly in the lc/ la ratio occurs at slightly
compressive strain (−1%). This arises from an abrupt change
in the octahedral rotation angle occurring at this strain, shown
in Fig. 6. Near zero strain, the strain effect is accommodated

FIG. 4. The d-orbital resolved one-particle spectra A(ω) (in units
of states/eV) computed within GGA+DMFT (U = 5 eV and J =
0.7 eV) for LaNiO3/LaAlO3 superlattices. Different strain results
for −3.1% (top figure), −0.93% (middle figure), and 3.1% (bottom
figure) are shown. Both Ni A (top panel) and Ni B (bottom panel)
results are displayed for each figure. The black line denotes the d3z2−r2

orbital and the red line represents the dx2−y2 orbital.

by the octahedral rotation rather than the octahedral distortion.
The orientations are specified by rotation angle γ about the axis
normal to the plane that is stressed, and α about an axis lying
in the stress plane. Consistent with experimental data [34],
for compressive strain the calculations indicate the dominant
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FIG. 5. Top panel: the layer-resolved Ni-O bond length ratio lc/ la
(lc: out-of-plane bond length, averaged over the two out-of-plane
bonds for a given Ni; la : in-plane bond length, averaged over the
four in plane bonds for a given Ni) for Ni A and Ni B sites as
a function of strain for the 4/4 LaNiO3/LaAlO3 superlattice (filled
dots, solid line) and bulk LaNiO3 (empty dots, dashed line). Bottom
panel: the layer-resolved out-of-plane Ni-O and Al-O bond lengths
lc. O1 denotes the apical O layer between two Ni A layers, i.e., the
middle layer of the Ni-O superlattice layers. O2 means the O layer
between Ni A and Ni B layers. O3 denotes the O layer between Ni
B and Al layers.

FIG. 6. Strain dependence of octahedral rotation angles γ (about
axis normal to the stress plane) and α (about axis lying in the stress
plane) for bulk LaNiO3.

FIG. 7. Orbital polarization as a function of octahedral distortion
d = 1 − lc

la
computed using GGA and GGA+DMFT (J = 0.7 and

1.0 eV) for the (a) Ni A and (b) Ni B sites of the 4/4 LaNiO3/LaAlO3

superlattice (points) compared to results for strained bulk LaNiO3

(lines).

rotation is around the z axis and the rotation about the in-plane
axis is small (γ 	 α ∼ 0), while for tensile strain the rotation
about the in-plane axis is large and there is no rotation about
the axis normal to the stress plane.

To obtain a more quantitative and precise understanding of
the relation between structure and polarization, we replot the
data in Fig. 2(c) in terms of octahedral distortion d defined as

d = 1 − lc

la
. (5)

Results are shown as dashed-dotted (GGA), solid (DMFT J =
0.7 eV), and dashed (DMFT J = 1 eV) lines in Fig. 7. We find
that the dependence of P on distortion is approximately linear
and may be written as

P (d) = P0 + Rd. (6)

The slope R defines the response of orbital polarization to
an Eg-symmetry octahedral distortion, in other words the
degree to which a distortion of an Ni-O octahedron leads to
a differential occupancy of the Ni eg levels. The intercept
P0 gives a measure of the other contributions to orbital
polarization; in the bulk case, the only other contribution
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TABLE I. Parameters P0 and R of Eq. (6) resulting in the best
linear fit to orbital polarization as a function of octahedral distortion
d for each Ni site and bulk. GGA and GGA+DMFT with J = 0.7
and 1 eV are compared.

Bulk Compressive Tensile

Po GGA −6.6 2.7
Po DMFT (J = 0.7 eV) −1.1 0.12
Po DMFT (J = 1.0 eV) −0.75 0.61

R GGA 3.6 5.2
R DMFT (J = 0.7 eV) 2.8 3.5
R DMFT (J = 1.0 eV) 1.9 2.2

Ni A Site Compressive Tensile
Po GGA −18 −0.71
Po DMFT (J = 0.7 eV) 2.6 −1.1
Po DMFT (J = 1.0 eV) 2.2 −1.1
R GGA 3.1 5.4

R DMFT (J = 0.7 eV) 4.4 2.9
R DMFT (J = 1.0 eV) 2.9 1.9

Ni B Site Compressive Tensile
Po GGA 12 15
Po DMFT (J = 0.7 eV) 8.1 8.5
Po DMFT (J = 1.0 eV) 2.0 3.7

R GGA 4.1 4.1
R DMFT (J = 0.7 eV) 4.9 2.8
R DMFT (J = 1.0 eV) 3.3 1.7

comes from the octahedral rotations, while in the superlattices
quantum confinement effects may also play a role.

Results for P0 and R are given in Table I. We see that for
the bulk material, the difference of P0 values between between
positive and negative d is small, of the order of 10–20% of
the total change in P across the strain range we study, and
the difference in R is also not large. However, the slope R

is strongly increased across the unstrained point, and the P0

value is almost zero (Fig. 7). We interpret these changes as
arising from the abrupt change in octahedral rotations across
this point. In agreement with previous work [6,13], we find
that many-body effects, in particular increasing the Hund’s
coupling J , act to decrease both the magnitude of P and its
response to structural change R. It is interesting to note that
the interactions decrease P0 by a relatively larger amount than
they reduce R and that the renormalization of R is larger for
tensile strain. We will discuss the reason in Sec. VI.

We now turn to the superlattice. Here the physics is
richer. Figure 2 shows a pronounced difference in polarization
between A and B Ni ions, much larger changes across zero
strain, and much greater variation of slopes. From Fig. 5 we see
also a greater richness of structural effects. The Ni-A and Ni-B
sites respond differently to strain: the distortion of the inner
(Ni A) octahedron is greater than the distortion of the outer
(Ni B) octahedron, with the A-B difference being greatest for
compressive strain and becoming very small for large tensile
strain. The difference of the Ni-O bond length lc between two
apical O ions becomes also greatest for compressive strain and
smallest for tensile strain, accounting for this distinct response
of lc/ la under the sign change of the strain (see Fig. 5, bottom
panel).

FIG. 8. The layer-resolved NiO6 octahedral rotational angles: α,
out-of-plane rotation around x axis (square dots) and γ , in-plane
rotation around z axis (circular dots) for 4/4 LaNiO3/LaAlO3

superlattices. Ni A (filled dots) and Ni B (empty dots) are shown.
The black dots under compressive strain denote experimental values
obtained for 4/4 LaNiO3/LaAlO3 [35].

The primary reason for the difference in distortion is that
the bonding between the apical O and the Al is weaker than the
bonding between the apical O and the Ni B. Under compressive
strain, the Al layer in effect provides a steric hindrance that
prevents the O from coming too close to the Al, thus inhibiting
the elongation of the Ni B-apical O bond length favored by
compressive strain while the Ni A-apical O bond length is
greatly elongated. Under tensile strain, a shorter Ni-apical O
bond length is preferred, but the energy cost for increasing the
Al-O bond length from its preferred value is much less than
the cost of decreasing it, thus explaining the near equivalence
of the structural distortions of the Ni-A and Ni-B under tensile
strain.

The octahedral rotations are also different for tensile and
compressive strain. The rotation pattern for the NiO6 octahedra
itself changes from the a−a−c− pattern observed at all strains
in bulk and for compressive strain in the superlattice to
a−a−c+ for tensile strain. (The rotation pattern found for the
AlO6 octahedra is always a−a−c−.) Figure 8 shows that for
compressive strain, the dominant rotation is around the z axis
and the out-of-plane rotation is negligible, γ 	 α ∼ 0, as is
the case for the bulk materials. However, for tensile strain both
rotations occur, with rotations around the in-plane somewhat
larger, but rotations about the z axis are not negligible.
The non-negligible α found for tensile strain arises from a
transverse motion of the oxygen, which makes it easier for the
system to reach a compromise between the preferred Al-O
and Ni-O in-plane bond lengths. With this information in
hand, we turn to the dependence of orbital polarization on
octahedral distortion shown in Fig. 7. For the Ni-A site [panel
(a)], both the superlattice orbital polarization P (points) and the
dependence of P on the octahedral distortion (R) under tensile
strain are very similar to that found for the bulk materials
(lines); however, for compressive strain the absolute P values
in the superlattice are rather larger than bulk, while the effect
of interactions (DMFT) is to strongly reduce P toward bulk
values. The DMFT effect on the slope R under compressive
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strain is smaller and indeed of opposite sign, leading for
J = 0.7 eV to a slightly larger R than in the GGA.

The most important effect apparent in the Ni-B site results
[Fig. 7(b)] is a large positive offset relative to the bulk
calculation. Both for tensile and for compressive strain, and for
all methods, the P0 values are much larger in the superlattice
Ni-B than in bulk or than for the Ni A-site. This difference
in P0 is the quantum confinement effect: the barrier imposed
by the AlO2 layer has the effect of making the apical oxygen
hybridize more strongly with the Ni B-site, thus raising the
energy of the frontier antibonding Ni-O state and thereby
depopulating the 3z2 − r2 orbital. The effect is strongest in
the GGA calculation, and is reduced as J is increased.

Turning now to the variation with octahedral distortion, we
see that for tensile strain the fitted slope R is systematically
smaller for the Ni-B site than for the Ni-A site or for the
bulk calculation, and the actual data display a tendency to
saturation. Conversely, for compressive strain the Ni B site R

is systematically larger than the A site or bulk values. These
observations indicate a strong coupling between quantum
confinement and structural effects. For the B site under tensile
strain, the effect of the strain-induced decrease in apical
Ni-O bond length is less significant because the O is already
strongly bonded to the Ni and the quantum confinement effect
is strong; this explains the decreased R value compared to
the A site or bulk. For compressive strain, the tendency to
increase the Ni-O distance weakens the Ni-O bond, making
the quantum confinement effect less important and conversely
the octahedral distortion effect more influential; these effects
explain the larger R value under compressive strain.

VI. ANALYSIS: MANY-BODY EFFECTS

The effect of correlations on orbital polarization is con-
tained in the real parts of the electron self-energies. The
self-energy is a 2 × 2 matrix. In the DMFT approximation
used here it is site-local, and for a given Ni site it is
approximately diagonal in the orbital basis aligned with
the axes of the NiO6 octahedron. In this basis, it has two
components, corresponding to the dx2−y2 and d3z2−r2 orbitals.
In the GGA+DMFT approach used here, the double-counting
term is orbital-independent, so the difference between the
real parts of the two diagonal components of the self-energy
provides a many-body correction to the difference in bare
energy levels. A positive sign of �d3z2−r2 − �d

x2−y2 means that

many-body effects shift the 3z2 − r2 level up in energy relative
to the x2 − y2 level, thus increasing P . Figure 9 presents
the zero-frequency limit of the self-energy difference for the
superlattice and the bulk system.

Consider first the results for the bulk material. We see that
the self-energy difference is positive (acts to increase P ) for
compressive strain (except near zero strain, where GGA P

starts to change the sign) and negative (acts to decrease P )
for tensile strain. We see that for both signs of strain, the
magnitude of the self-energy is twice as large for J = 1 eV as
it is for J = 0.7 eV, and that the self-energy has more strain
dependence for tensile strain than for compressive strain. The
difference in magnitude of the self-energy � difference across
d = 0 causes the decrease in P0 between compressive and
tensile strain. A dependence of the magnitude of δ� on strain

FIG. 9. The difference of the real part of the self-energy
�d (ω = 0) between the d3z2−r2 and the dx2−y2 orbitals for the 4/4
LaNiO3/LaAlO3 superlattice (filled symbols and solid lines) and for
strained bulk LaNiO3 (open symbols and dashed line) for U = 5 eV
and J values of 0.7 eV [panel (a)] and 1 eV [panel (b)].

provides the renormalization of R. We see that for the bulk
material, the change of the magnitude of � is much larger than
that of the δ� dependence on strain, and this δ� dependence
is larger for tensile than for compressive strain. These results
explain the strong reduction of P0 compared to R and the
difference in renormalization of R reported above.

We now turn to the superlattice. We see that generically the
sign of the self-energy is such that the many-body effects act to
drive the polarization toward zero for both Ni sites regardless of
strain or quantum confinement. Thus for the B-site, the self-
energy difference is always negative (decreases P ) because
quantum confinement effects produce positive GGA P values
for all strain values. The Ni A self-energy changes sign because
the sign of P also changes. The sign change does not take place
at exactly the same strain value in both quantities because P is
determined by an average of Re� over a range of frequencies.

The DMFT self-energy also encodes the mass enhancement
effect, which can quantify the electronic correlation strength.
We show in Fig. 10 the mass enhancement m∗/m for the 4/4
LaNiO3/LaAlO3 superlattices for the d3z2−r2 (filled symbols)
and the dx2−y2 (open symbols) orbitals. For Ni A (square and
blue dots) at large tensile strain, the d3z2−r2 m∗/m decreases
as the apical bond length lc becomes small while the dx2−y2

m∗/m increases due to the large la . The change of the bond
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FIG. 10. The orbital-resolved mass enhancement m∗/m for the
d3z2−r2 (filled symbols) and the dx2−y2 (open symbols) orbitals of
the 4/4 LaNiO3/LaAlO3 superlattice as a function of strain (m∗ is
the effective mass of GGA+DMFT and m is the bare mass obtained
within the GGA). Both the inner Ni A (square and blue) and the
outer Ni B (circular and red) layers are compared. U = 5 eV and
J = 0.7 eV are used for GGA+DMFT calculations.

angle also affects m∗/m, however the trend under strain is
opposite that of the bond length. For example, the d3z2−r2

m∗/m in Ni A becomes larger across the zero strain as the
bond angle α increases (see Fig. 8) even though lc is decreasing
toward the tensile strain. Similar effects of strain on m∗/m of
the bulk LaNiO3 have already been reported in Ref. [36]. Ni
B (circular and red) displays a similar m∗/m behavior for
the dx2−y2 orbital, while the d3z2−r2 m∗/m is quite reduced
compared to the Ni A d3z2−r2 orbital due to the enhanced
hybridization effect of the Ni B d3z2−r2 orbital.

To further confirm the consistent behavior of orbital
polarization for the ultrathin limit, we also computed the 1/1
LaNiO3/LaAlO3 superlattice (which should exhibit stronger
quantum confinement effects since the Ni site is bounded on
two sides by the insulator) at U = 5 eV and J = 0.7 eV for the
most compressive strain (−3.1%) and the most tensile strain
(3.1%). Under compressive strain, Ni P computed using the
GGA is −16.52% while GGA+DMFT produces P = 7.4%.
The large offset and the sign change are very similar to that
seen in the B-site of the 4/4 superlattice, confirming that
the effect is related to quantum confinement. Under tensile
strain, GGA P is 23.63% and GGA+DMFT reduces the
P value to 15.27%, a fractional reduction similar to that
found for the B-site in the 4/4 superlattice, confirming that
the quantum confinement effects are more important in this
case.

VII. CONCLUSION

This paper presents a theoretical study of the layer-resolved
orbital polarization of strained 4/4 LaNiO3/LaAlO3 perovskite
superlattices. We used the spin-polarized GGA to obtain
relaxed structures, and paramagnetic GGA+DMFT to account
for correlations on the Ni sites. Our calculations introduce two
kinds of external symmetry breaking: c-axis quantum confine-
ment associated with the insulating spacer layers and lattice
strain. We further analyze these perturbations in terms of the

resulting octahedral symmetry breaking caused by structural
relaxations that lead to a difference between the apical (c-axis)
Ni-O bond length lc and the in-plane bond length la , as well
as rotational and tilting distortions of NiO6 octahedra. By
comparing many-body and pure GGA calculations, as well
as superlattice and strained bulk calculations, we are able to
separate the effects.

The results presented here indicate that strain affects orbital
polarization in two ways: it deforms the NiO6 octahedra,
thereby explicitly leading to a splitting of the two Ni eg states,
and it changes the type of octahedral rotation pattern observed
for tensile versus compressive strain. It is useful to express the
polarization as the sum of a term proportional to the octahedral
distortion of a NiO6 octahedron and a residual arising from
quantum confinement and octahedral rotation effects (see
Table I). While in strained bulk LaNiO3 the change in rotation
angles has only a small effect on the orbital polarization,
in the superlattice the effect is larger. We further find that
proximity to the insulating AlO2 layer has a dramatic effect on
the polarization. This quantum confinement effect is at least as
important as the strain effects, but it is very local, affecting the
outer-layer Ni B site substantially and the inner-layer Ni A site
hardly at all. Finally, we note that quantum confinement and
strain effects combine in interesting ways. For tensile strain,
the superlattice Ni B exhibits a reduced R value compared
with that of bulk materials due to quantum confinement, while
for compressive strain the R value for Ni B can be larger since
the octahedral distortion effect on the change of P is more
important.

Our calculations reproduce the experiment [7] semiquanti-
tatively, yielding differences between the polarizations of the
Ni A and B sites with about the correct order of magnitude and
with a strain dependence of the correct order of magnitude.
GGA+DMFT is clearly an improvement over pure GGA
calculations. We demonstrate that the results have some
sensitivity to the value of the on-site interaction J , and the
optimal value to describe experiment lies somewhere between
the values of 0.7 and 1.0 eV used in this study.

An important direction for future work is to extend the ideas
introduced here to interfaces involving “early” transition-metal
oxides, such as the La and Sr titanates and vanadates. These
materials are closer to the Mott-Hubbard limit (hybridization
to oxygen is less important, and the d-valence is closer
to the formal valence), whereas the nickelates are in the
“negative charge transfer” limit (hybridization to oxygen is
crucial, and d-occupancy is much closer to d8 than to the d7

predicted by formal valence considerations). These differences
suggest that the early transition-metal oxides may be much
more susceptible to orbital polarization effects than are the
nickelates.
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