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Density functional versus spin-density functional and the choice of correlated subspace
in multivariable effective action theories of electronic structure
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Modern extensions of density functional theory such as the density functional theory plus U and the density
functional theory plus dynamical mean field theory require choices, including selection of variable (charge vs spin
density) for the density functional and specification of the correlated subspace. This paper examines these issues
in the context of the “plus U” extensions of density functional theory, in which additional correlations on specified
correlated orbitals are treated using a Hartree-Fock approximation. Differences between using charge-only or
spin-density-dependent exchange-correlation functionals and between Wannier and projector-based definitions
of the correlated orbitals are considered on the formal level and in the context of the structural energetics of the
rare-earth nickelates. It is demonstrated that theories based on spin-dependent exchange-correlation functionals
can lead to large and in some cases unphysical effective on-site exchange couplings. Wannier and projector-based
definitions of the correlated orbitals lead to similar behavior near ambient pressure, but substantial differences are
observed at large pressures. Implications for other beyond density functional methods such as the combination
of density functional and dynamical mean field theory are discussed.
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I. INTRODUCTION

Modern theories of electronic structure can be formally
constructed in terms of functionals of observables of interest
whose stationary points deliver the values of the observ-
ables [1]. Practical use of this formal construction requires
a choice of variables and of approximations to the functional.
Perhaps the most common choice is density functional the-
ory [2,3] (DFT), which can be formulated as an effective action
that is a functional only of the electron density [4] (i.e., not spin
resolved). While DFT is in principle exact, existing approx-
imations have had difficulty capturing phenomena related to
the formation of local magnetic moments. For example, neither
the local density approximation [3] (LDA) nor the generalized
gradient approximation (GGA) [5] provide correct accounts
of the structural energetics of layered and spinel manganites
that exhibit cooperative Jahn-Teller distortions associated with
the high spin state of Mn3+ [6], because at ambient pressure
both LDA and GGA incorrectly predict that the Mn ion is in
a nominal |t4

2ge
0
g〉 low-spin configuration instead of the proper

high-spin |t3
2ge

1
g〉 state. Indeed it seems intuitively clear that

it would be prohibitively difficult to construct a functional
based only on the density that could capture this sort of effect,
while a functional of the spin density might have a robust
approximation which can capture this physics. Additionally, a
functional of the spin density will clearly allow predictions to
be made about magnetism, and this avenue has been pursued
since the inception of DFT [3,7].

Functionals of both the charge and spin density such
as the the local spin-density approximation (LSDA) [7–9]
and the spin-dependent generalized gradient approximation
(SGGA) [10,11] have been constructed. Such theories are often
referred to as density functional theories, but in this paper we
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strictly distinguish terms, using the term density functional
theory (DFT) to refer to theories such as the LDA and GGA that
are based on a functional of the density only, and referring to
theories such as the local spin-density approximation (LSDA)
or the spin-dependent GGA (SGGA) as spin-density functional
theories (SDFT).

SDFT theories perform far better than DFT theories in
describing the energetics of magnetic insulators, resolving,
for example, the problems with manganites noted above [6].
SDFT theories additionally make predictions about spin
magnitudes and the nature of ordered states. However, the
known implementations of SDFT fail to correctly describe
many aspects of the physics and structure of strongly correlated
electron systems, for example providing qualitatively incorrect
structures for the rare-earth nickelates [12,13] (see, e.g.,
Ref. [1] for additional examples).

These difficulties motivated the construction of new ef-
fective action theories that depend not only on the density
or the spin density, but also on additional properties of a
subspace of orbitals for which correlations are believed to
be relevant [1,14]. Subspaces which have been treated in this
way include the transition metal d orbitals in transition metal
oxides and the lanthanide/actinide f levels in heavy-fermion
compounds. Various different variables can be defined from
the subspace of correlated orbitals. In this paper we focus on
the historically important and currently widely used choice
of the site-local spin and orbitally resolved density matrix
associated with the correlated subspace [15]; however, we
expect that our findings are relevant to other variable choices,
in particular to the case of dynamical mean field theory
where the additional variables are the components of the local
Green’s function. A straightforward functional to use with
the local spin-resolved density matrix is the Hartree-Fock
energy functional, defined using site-local matrix elements
of the Coulomb interaction. The functional resulting from this
combination of a local Hartree-Fock functional of a correlated
subspace and a standard functional of the density or spin
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density is commonly referred to as a “+U” extension of density
functional theory.

The paper that introduced the “+U” approach [14] em-
ployed a functional of the electron density only, so it is referred
to here as a DFT+U approach. However, the vast majority of
subsequent papers [15] employ SDFT functionals and are re-
ferred to here as SDFT+U approaches. Despite the many suc-
cesses of the +U methodology, basic points including the ratio-
nale for choosing SDFT+U in preference to DFT+U and the
factors influencing the construction of the correlated subspace
have not been clearly discussed. While the general formalism
may be applied with any choice of orbital, it is important in
practice to choose orbitals that are optimal in the context of the
other approximations used in constructing the theory. While
there is no clear prescription for doing this, the local nature of
the approximations which will ultimately be used suggests that
it is sensible to choose the correlated subspace to consist of well
localized “atomic-like” orbitals. These orbitals may be con-
structed from by projecting onto a set of localized orbitals de-
fined to lie within atomic spheres. This choice is natural, given
that many basis sets for electronic structure already utilize pro-
jectors. Projectors are used in various beyond-DFT methods
including (S)DFT+U [16] as well as DFT+DMFT [17–23].
Alternatively, Wannier functions may be used to construct the
correlated orbital sets for beyond-DFT calculations. Various
forms of the Wannier function have been used for DFT+U [24]
and DFT+DMFT [25–32] including the projected Wannier
function, N th-order muffin-tin orbitals [24], and the maximally
localized Wannier function (MLWF) [33–35].

In this paper we describe the physical differences between
DFT+U and SDFT+U and provide guidelines to enable
researchers to choose between them. We further compare
the effect of different correlated orbitals sets (projector
vs Wannier) on energy calculations within the (S)DFT+U
method. We also present a comprehensive discussion of the
issues arising when the +U methodologies are combined with
the projector-augmented plane wave (PAW) formalism widely
used to perform efficient (S)DFT calculations. In addition to
the formalism we provide a quantitative application in the
context of the relation between crystal structure and energetics
of the rare-earth nickelates. This family of materials provides
a useful benchmark because its members exhibit a structural
phase transition which is not correctly captured either by
DFT or by SDFT calculations. We compare DFT+U and
SDFT+U, using both projectors and Wannier functions to
construct the correlated subspace. These results can also be
directly compared to our recent DFT+DMFT total energy
calculations for the same class of materials [13].

We note in passing that an additional important issue
in DFT+U and SDFT+U theories is the so-called double-
counting correction, introduced to account for the fact that
the local interactions denoted by U and J are to some degree
present already in the (S)DFT. The double-counting issue has
been addressed in great detail in previous work [13] and is not
critical to the issues examined here. Therefore in this paper we
use the conventional definition of the “fully localized limit”
double counting [36,37].

The rest of this paper is organized as follows.
Section II presents the basic formalism. Section III provides
a careful discussion of the issues involved in combining

the +U formalism with the projector-augmented plane wave
method. Section IV presents expressions for forces needed
in optimizing structures. Section V compares the DFT+U
and SDFT+U (with projector and Wannier definitions of the
correlated subspace) predictions for the structural properties
of the rare-earth nickelates as a function of unit cell volume,
while Sec. VIII provides a comparison of predictions for
the rare-earth nickelate phase diagram and the equilibrium
volume. Section IX contains a summary and conclusions.
Relevant computational details are given in the Appendix.

II. FORMALISM

In this section we present explicit formulas for the energy
functional, using a variant of presentation of the DFT+DMFT
functional given in Ref. [13]. We derive the total energy func-
tional for SDFT+U, and then obtain the DFT+U functional
as a special case.

The SDFT+U total energy functional is defined by

E[ρσ ,nτσ ] = Tr
[〈
Ĥ σ

U

〉] − Tr
[
V̂ σ

Hxc · ρσ
]

− Tr
[
V̂ σ

int · nτσ
] + EHxc[ρσ ] + Eint[nτσ ], (1)

where ρσ denotes the charge density of electrons with spin σ

(we neglect spin-orbit coupling here for simplicity) and nτσ

is a density matrix within the correlated subspace of an atom
τ . Here the brackets 〈 〉 mean that the eigenstates of Ĥ σ

U are
summed over for the eigenvalues less than the Fermi energy.

The functional EHxc is the familiar Hartree and exchange-
correlation energy functional of the DFT theory to be used and
V̂ σ

Hxc = δEHxc/δρσ is the corresponding Hartree-exchange-
correlation potential.

Eint is the combination of a Hartree-Fock potential energy
Epot defined within the correlated subspace and a double-
counting correction EDC introduced to remove from this
potential the parts already included in the underlying DFT:

Eint = Epot − EDC. (2)

In the applications presented here we follow the common
practice in the literature by choosing the correlated subspace
to be particular orbitals m of spin σ on particular atoms τ in
the solid, for example the 3d orbitals in a first-row transition
metal ion or the 4f orbitals in a lanthanide ion, so that

Epot =
∑

τ,m1m2
m3m4σ1σ2

(
Uσ1σ2σ1σ2

m1m3m2m4
− Uσ1σ2σ2σ1

m1m3m4m2
· δσ1σ2

)
nτσ1

m1m2
nτσ2

m3m4
,

(3)
where the Uσ1σ2σ1σ2

m1m3m2m4
are the site-local matrix elements of

the Coulomb interaction within the correlated subspace,
appropriately renormalized by the solid-state environment.
This paper will present an application of the formalism to the
case of transition metal d orbitals where (if spin-orbit coupling
is neglected) the Uσ1σ2σ1σ2

m1m3m2m4
may be parametrized by the Slater

integrals F 0, F 2, and F 4. We typically further assume that the
d-wave functions are sufficiently similar to their free-space
forms that F 4 = 0.625F 2. It is then conventional to define
on-site interaction U and the Hund’s coupling J via F 0 = U ,
F 2 = (14/1.625)J [36].
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The double-counting energy EDC is the subject of contin-
uing discussion in the literature but these subtleties are not
relevant here. We adopt the “fully localized limit” form given
by

EDC
[
Nσ

τ

] = U

2
Nτ (Nτ − 1) − J

2

∑
σ

Nσ
τ

(
Nσ

τ − 1
)
, (4)

where Nσ
τ is the total number of electrons of spin σ on site

τ and Nτ = ∑
σ Nσ

τ is the total on-site charge density in the
correlated subspace. Note that use of SDFT (in other words
the dependence of EHxc[ρσ ] on the spin density) means that
that the double-counting potential Eσ

DC in Eq. (4) also depends
on spin indices.

The corresponding interaction potential V̂ σ
int is obtained as

V σ
int = ∂Eint/∂nτσ :

V̂ σ
int =

∑
m,m′

|τ,m,σ 〉(V τσ
pot,mm′ − V τσ

DC

)〈τ,m′,σ |, (5)

where

V τσ
pot,mm′ =

∑
m1m2σ1

(
Um1mm2m′ − Um1mm′m2 · δσ1σ

)
nτσ1

m1m2
(6)

and

V τσ
DC = U

(
Nd − 1

2

) − J
(
Nσ

d − 1
2

)
. (7)

Finally, the effective Hamiltonian Ĥ σ
U is

Ĥ σ
U = Ĥ σ

KS + V̂ σ
int, (8)

where the Kohn-Sham Hamiltonian Ĥ σ
KS is

Ĥ σ
KS[ρσ ,R] = − 1

2 ∇̂2 + V̂ext[R] + V̂ σ
Hxc[ρσ ]. (9)

Ĥ σ
U is the analog of the Kohn-Sham Hamiltonian Ĥ σ

KS of
SDFT. V̂ext is an external potential arising from atomic nuclei at
the position R (the interaction between nuclei is not explicitly
denoted but is included in the formalism).

The physical state of the system at zero temperature is
obtained by extremizing Eq. (1) with respect to variations in ρσ

and nτσ . To perform the extremization, we solve the eigenvalue
problem of Ĥ σ

U and find the eigenstates |�σ
ik〉 (i is a band index

and k is a momentum in the first Brillouin zone). We then
determine the local charge density ρσ (r) = ∑

ik f σ
ik |�σ

ik(r)|2
[f is the Fermi function and it is evaluated at zero temperature
(T = 0)]. The on-site density matrix is also determined from
|�〉 using for example the method described in Sec. III B or
Sec. III C. Finally, we require consistency between the ρσ and
nτσ and the Kohn-Sham and Vint potentials they imply.

Once self-consistent solutions of ρσ and nτσ are obtained,
the total ground-state energy E can be obtained from the value
of Eq. (1) at the stationary point of both ρσ and nτσ . It is also
useful to cast the total energy functional in Eq. (1) in a slightly
different form, both for analysis and for technical reasons
specially when using Wannier functions. The SDFT+U total
energy functional can be decomposed into the SDFT energy
(ESDFT ), the KS energy correction (E�KS), and the interaction
energy correction (Eint) (defined only within the correlated
subspace) as follows:

E = ESDFT + E�KS + Eint, (10)

where

ESDFT = Tr
[〈
Ĥ σ

KS

〉] − Tr
[
V̂ σ

Hxc · ρσ
] + EHxc[ρσ ] (11)

and

E�KS = Tr
[〈
Ĥ σ

U

〉] − Tr
[
V̂ σ

int · nτσ
] − Tr

[〈
Ĥ σ

KS

〉]
. (12)

DFT+U is a special case of the SDFT+U in which the
exchange-correlation energy depends only on the total density
ρ; i.e., 	KS(ρσ ) → 	KS(ρ). However, spin dependence is
retained in the correlated subspace, so nτσ is still considered
to be spin dependent. Thus the total energy functional in Eq. (1)
becomes

E[ρ,nτσ ] = Tr
[〈
Ĥ σ

U

〉] − Tr[V̂Hxc · ρ]

− Tr
[
V̂ σ

int · nτσ
] + EHxc[ρ] + Eint[nτσ ], (13)

where

Ĥ σ
U = ĤKS + V̂ σ

int. (14)

The rest of the formalism carries through as before, except
that the exchange-correlation potential now depends only on
ρ and therefore the double-counting correction is taken to be
spin-independent:

EDC[Nτ ] = U

2
Nτ (Nτ − 1) − J

4
Nτ (Nτ − 2), (15)

implying

VDC[Nτ ] = U

(
Nτ − 1

2

)
− J

2
(Nτ − 1). (16)

Thus in DFT+U theories spin dependence arises only from
the properties of the correlated subspace (which affect the rest
of the system via hybridization).

III. CORRELATED ORBITALS AND THE
IMPLEMENTATION OF (S)DFT+U USING THE

PROJECTOR-AUGMENTED PLANE WAVE METHOD

A. Overview

In this paper, the DFT portion of the functional [Eq. (11)]
is implemented using the projector-augmented wave (PAW)
method [38]. The main idea of PAW is to circumvent treating
the computationally inconvenient core states by use of a linear
transformation which relates an all-electron wave function |ψ〉
to a pseudo-wave-function |ψ̃〉. The transformation requires
the addition of augmentation terms which can be expanded
using a projector function |p̃〉 and the resulting KS Hamilto-
nian contains additional terms arising from the augmentations,
but because the resulting pseudo-wave-function is smoothly
varying computations are much more efficient.

In the PAW method, the SDFT energy functional can be
split into three terms:

ESDFT = Ẽ[ñ,n̂,ñZc] + E1[n1,nZc] − Ẽ1[ñ1,n̂,ñZc], (17)

where Ẽ is the pseudoenergy term, E1 is the on-site all-electron
energy term, and Ẽ1 is the on-site pseudoenergy term. ñ

is the pseudo-charge-density, n1 is the on-site all-electron
charge density, ñ1 is the on-site pseudo-charge-density, n̂ is
the compensation charge between n1 and ñ1 such that ñ1 + n̂
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has the exact same moment as n1, ñZc is the pseudized core
density, and nZc is the all-electron core density.

The effective Ĥ σ
KS for generating the pseudo-wave-function

|ψ̃〉 is now given by extremizing ESDFT in Eq. (17) with
respect to the pseudized charge ρ̃σ :

Ĥ σ
KS = −1

2
∇̂2 + ṽeff +

∑
i,j

|p̃i〉
(
D̃ij + D1

ij − D̃1
ij

)〈p̃j |,

(18)
where ṽeff is the effective pseudo one-particle potential
obtained using ṽeff = ∂ESDFT

∂ρ̃σ . D̃ij , D1
ij , and D̃1

ij are potentials
conjugate to the density matrix of the augmentation part ρij ;
i.e., D̃ij = ∂Ẽ

∂ρij
, D1

ij = ∂E1

∂ρij
, and D̃1

ij = ∂Ẽ1

∂ρij
.

Equation (17) can be cast into a form similar to that of
Eq. (11):

ESDFT [ρσ ] =
∑
ik

fik〈ψ̃ik|Ĥ σ
KS |ψ̃ik〉 + EPAW

dc [ñ,n̂,n1,ñ1].

(19)
The PAW double-counting correction EPAW

dc also contains a
pseudo part and an augmentation part:

EPAW
dc [ñ,n̂,n1,ñ1] = Ẽdc[ñ,n̂] + E1

dc[n1] − Ẽ1
dc[ñ1,n̂]. (20)

The PAW double-counting correction EPAW
dc should not be

confused with the double-counting correction EDC required
in the interaction functional. The derivation of the above
equations and the explanation of each term are given in
Ref. [39].

The treatment of the +U interactions in the PAW formalism
depends on the prescription used to construct the correlated
subspace. Accordingly, the remainder of this section is divided
into two parts, one dealing with the projector formalism
(Sec. III B) and one with the Wannier formalism (Sec. III C).

B. Projectors: Orthonormalization

We begin with the projector method, in which the compo-
nents nτσ

mn of the correlated orbital density matrix n appearing
in Eq. (1) are obtained by projecting the Kohn-Sham wave
function ψ onto the spherical harmonics Ylm inside an atomic
sphere centered on atom τ with the radius rτ

c ; i.e.,

nτσ
mn =

∑
ik

fik
〈
ψσ

ik

∣∣P̂ τ
mn

∣∣ψσ
ik

〉
. (21)

Here i is a band index and k is a wave vector in the first
Brillouin zone. fik is the Fermi function evaluated at T = 0
throughout our paper and P̂ τ

mn is the projector function on atom
τ defined by

〈r′|P̂ τ
mn|r〉 = Y ∗

ln(r̂′
τ )Ylm(r̂τ )δ(rτ − r ′

τ )�
(
rτ < rτ

c

)
, (22)

where rτ = r − Rτ is the position vector defined with respect
to the atomic center Rτ and �(x) is the step function such that
�(x) = 1 if x < 0 and �(x) = 0 if x > 0 [16]. Note that if the
Fermi function is removed from Eq. (21) and the sum is taken
over all bands i and momenta k then standard completeness
relations imply that

Oτσ
mn ≡

∑
ik

〈
ψσ

ik

∣∣P̂ τ
mn

∣∣ψσ
ik

〉 ∼ Onδmn (23)

is a diagonal matrix, whose normalization depends on the
choice rτ

c of sphere cutoff.
Within the PAW formalism, nτσ

mn is computed from the
pseudo-wave-functions |ψ̃〉 and a pseudoprojector P̃ τσ as

nτσ
mn =

∑
ik

fik
〈
ψ̃σ

ik

∣∣P̃ τ
mn

∣∣ψ̃σ
ik

〉
. (24)

The pseudoprojector is defined in terms of an appropriate set
|φa > of solutions to the Schrödinger equation for a reference
atom in free space as

P̃ τ
mn =

∑
ab

|p̃a〉〈φa|P̂ τ
mn|φb〉〈p̃b|, (25)

where the |p̃〉 are the PAW projector functions conjugate to the
φa . In practice, we use the implementation in the VASP code.

The wave functions defined by the PAW projector process
do not constitute an orthonormal set because the sum is only
over a subset of states and a choice of sphere radius is made.
Thus the overlap matrix

Oτσ
mn =

∑
ik

〈
ψ̃σ

ik

∣∣P̃ τ
mn

∣∣ψ̃σ
ik

〉
(26)

is neither diagonal nor possessing correctly normalized eigen-
value. To obtain a properly orthonormalized density matrix n̄

within the correlated subspace we define

nτσ
mn =

∑
m′n′

(Oτσ )−1/2
mm′ · nτσ

m′n′ · (Oτσ )−1/2
n′n . (27)

This procedure of the orthonormalization of the projector
function is used in some DFT+DMFT implementations [22].

Within the PAW formalism, the effective Hamiltonian Ĥ σ
U

can be obtained by varying the energy functional Eq. (1) with
respect to the pseudized charge ρ̃σ = ∑

ik fik|ψ̃σ
ik〉〈ψ̃σ

ik|:

Ĥ σ
U = Ĥ σ

KS + dEint

dρ̃σ
= Ĥ σ

KS + V σ
int[n̄

τσ ] · dn̄τσ

dρ̃σ
. (28)

The dn̄τσ

dρ̃
term in Eq. (28) is difficult to evaluate because

the overlap matrix O in Eq. (27) also varies implicitly due
to the change of |ψ̃ik〉. For simplicity, we assume that the
orthonormalization effect is fully incorporated in the electronic
V σ

int[n̄
τσ ] term while the change of the density matrix via ρ̃ is

computed from the unnormalized nτσ :

V σ
int[n̄

τσ ] · dn̄τσ

dρ̃

 V σ

int[n̄
τσ ] · dnτσ

dρ̃

=
∑
ij

|p̃i〉 · (
V σ

int[n̄
τσ ] · 〈φi |P̂ τ |φj 〉

) · 〈p̃j |.

(29)

This interaction potential part is expanded with the basis of
the projector |p〉 and it can be added to the augmentation part
of Ĥ σ

KS in Eq. (30). Therefore, the Hamiltonian Ĥ σ
U is given

by

Ĥ σ
U =−1

2
∇̂2+ṽeff +

∑
i,j

|p̃i〉
(
D̃ij +D1

ij −D̃1
ij +V ij

)〈p̃j |,

(30)
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where

V ij = V σ
int[n̄

τσ ] · 〈φi |P̂ τ |φj 〉. (31)

The total energy functional within PAW can be obtained as
follows:

E[ρσ ,nτσ ] =
∑
ik

fik〈�̃ik|Ĥ σ
U |�̃ik〉 + EPAW

dc [ñ,n̂,n1,ñ1]

− Tr
(
V σ

int[n̄
τσ ] · nτσ

) + Eint[n̄τσ ]. (32)

The interaction energy correction Eint (Epot [Eq. (3)] − EDC

[Eq. (4)]) term and the interaction potential correction V σ
int term

are computed using the orthonormalized density matrix nτσ
mn.

In practice, the band energy correction term Tr(V σ
int[n̄

τσ ] · nτσ )
is computed only updating the V σ

int term while the density nτσ

is obtained from unnormalized projector functions. In this way
properly orthonormalized correlated orbitals can be used with
only a slight modification of the PAW formalism.

C. MLWF orbitals

Here, we derive the +U formalism in the case where the
correlated subspace nτσ

mn is defined by Wannier functions. We
follow the approach used in our previous analysis of the
DFT+DMFT formalism [13]. In this subsection we present
the formalism purely for DFT+U, as all of the comparisons
between projectors and Wannier in this study will take place
in the context of DFT+U. The generalization to SDFT+U is
however straightforward.

Wannier functions are discussed at length in the litera-
ture [33–35]. Here we make only a few remarks. First, the
construction of a Wannier function requires the specification
of a hybridization window W , a range of energies from which
the states used in the construction of the Wannier functions
are defined. This energy range should encompass both the
correlated orbitals and the orbitals which directly hybridize
with the correlated ones. For example, in the case of the
rare-earth nickelates, Wannier functions are constructed from
an energy window (≈11 eV wide) including the full Ni-3d

and O-2p manifolds. By construction the Wannier functions
provide a complete orthonormal basis for states within the
energy window so it is not necessary to introduce an overlap
matrix. A continuous infinity of choices of Wannier basis
exists; here we choose a “maximally localized” (MLWF [33])
basis set that minimizes the sum of Wannier function spreads
(〈r2〉-〈r〉2) and also perform an additional orbital rotation as
described below Eq. (33) We denote the resulting states as
|WRτ

n 〉 where τ labels an atom within a unit cell, R denotes a
lattice vector, and n is an orbital index.

The projection of the DFT Hamiltonian onto the MLWF
basis set is

H
0,R′

τ ′ Rτ

mn = 〈
W

R′
τ ′

n

∣∣ĤKS

∣∣WRτ

m

〉
. (33)

As discussed, e.g., in Ref. [13], for the Wannier functions
pertaining to the correlated states we perform a rotation in
the orbital indices to minimize the off-diagonal terms of the
on-site correlated state Ĥ

0,Rcorr,τ ,Rcorr,τ

mn in the mn subspace.
The DFT+U calculation solves the eigenvalue problem of

the ĤKS + V̂ σ
int matrix within the hybridization window W .

One should note that the V̂ σ
int term is spin-dependent while ĤKS

has no explicit spin dependence and has parameters determined
by the total density.

The density matrix η within the hybridization window,
which includes the correlated subspace as a subset, is obtained
from the eigenvalues and eigenfunctions of ĤKS + V̂ σ

int as

ητσ
mn =

∑
l∈W,k

f
(
εσ
lk

)〈
ψlk

∣∣WRτ

m

〉〈
WRτ

n

∣∣ψlk
〉
. (34)

The density matrix nτσ
mn in the correlated subspace is a subblock

of ητσ
mn. Our basis choice in the nm space means that the off-

diagonal terms are negligible: nτσ
mn ≈ δnm.

The band energy correction E�KS is then given by

E�KS = Tr(ĤKS · η) − Tr(ĤKS · η0), (35)

where the η0,τ
mn is computed via Eq. (34) but using the

eigenfunctions and eigenvalues of ĤKS rather than HKS + V σ
int.

The interaction energy can be defined using Eq. (3) with the
calculated density matrix [Eq. (34)]. In our application to the
nickelates we construct this term using the Slater-Kanamori
Hamiltonian as defined in our previous paper [13] and for
ease of reference present the results in the same notation. In
Ref. [13] the on-site intraorbital interaction is given as u, the
Hund’s coupling is j , the interorbital interaction is u − 2j ,
and the exchange and pair-hopping terms do not contribute
in the Hartree-Fock approximation used here. The parameters
are related to the U and J defined elsewhere in the paper by
u = U + (8/7)J and j = (5/7)J . For the specific application
to the nickelates we took u = 6.14 eV and j = 0.71 eV
(corresponding to U = 5 eV and J = 1 eV).

The interaction potential energy is then

Epot = u
∑
m,τ

nτ↑
m nτ↓

m + (u − 2j )
∑

m�=m′,τ

nτ↑
m n

τ↓
m′

+ (u − 3j )
∑

m>m′,τσ

nτσ
m nτσ

m′ , (36)

while the double-counting energy is

EDC = u

2
Nd (Nd − 1) − 5j

4
Nd (Nd − 2), (37)

where here Nd is the total occupancy of the d levels on a Ni
ion.

IV. THE FORCE FUNCTIONAL

The force functional is defined in terms of the derivatives
of the energy functional with respect to atomic positions. Here
we present the force functional corresponding to the DFT+U
version of the energy functional in Eq. (13); the SDFT+U
forces can be derived similarly. The specifics depend on the
formalism. As before, the PAW formalism as implemented in
VASP is utilized and we present forces for the projector, while
we outline the differences for the case of a Wannier-based
correlated subspace.

The DFT+U force functional consists of two parts, namely
the same functional form used in DFT except that the DFT
Fermi function is replaced by the DFT+U density matrix
utilizing DFT+U eigenvalues and eigenfunctions and an
additional force term derived from the Eint energy term.
The computation of the forces requires consideration of the
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derivatives of the correlated orbital density matrix with respect
to R, which in turn arise from the changes of the correlated
orbital wave functions as the atomic positions change. The
derivative of the projector orbital is already computed within
DFT force formalism; therefore one can adopt the the same
calculation already implemented in VASP. In the case of
Wannier functions, additional implementation is needed to
compute the derivative of Wannier function |WR

m 〉 with respect
to R.

The force functional following from the projector-
correlated orbital set can be derived from the energy functional
in Eq. (32); taking derivatives with respect to R produces
the same functional form as the PAW force functional (see,
e.g., Ref. [39] for details) except that the eigenvalues εn and
eigenfunctions ψ̃n are obtained by solving Ĥ σ

U . The force has
terms due to the change of the pseudized core charge density
ñZc via the explicit movement of the ionic positions, the change
of the compensation charge n̂ itself, and the change of the
projector functions |p̃〉 as the ions are moved:

FDFT +U

= −
∑

n

fn〈ψ̃n|
∂
(
Ĥ σ

U − εn(1 + ∑
ij |p̃i〉qij 〈p̃j |)

)

∂R
|ψ̃n〉

= F 1

[
∂ñZc

∂R

]
+ F 2

[
∂n̂

∂R

]
+ F 3

[
∂|p̃〉〈p̃|

∂R

]
, (38)

where

F 3

[
∂|p̃〉〈p̃|

∂R

]
= −

∑
n,ij

(
D̂ij + D1

ij − D̃1
ij + V ij − εnqij

)

×fn〈�̃n|∂|p̃i〉〈p̃j |
∂R

|�̃n〉. (39)

qij is the correction to the overlap matrix given by 〈φi |φj 〉 −
〈φ̃i |φ̃j 〉. The explicit expressions of F 1 and F 2 are the same
as DFT forces given in Ref. [39]. The implicit changes of the
Hamiltonian Hσ

U via the density ñ, n1, ñ1, and n̂ are always
canceled out exactly against the change of EPAW

dc terms in
Eq. (32).

The evaluation of a force term from Eint requires the
derivative of the correlated orbital density matrix, i.e., dnτσ

dR ,
and the result depends on the choice of correlated orbital sets.
Within the projector scheme, the force term arising from the
implicit change of interaction energy correction Eint [Eq. (32)]
via the orthonormalized density matrix n̄τσ is given by

F int = dEint[n̄τσ ]

dn̄τσ
· dn̄τσ

dR
= V σ

int[n̄
τσ ] · dn̄τσ

dR
. (40)

Here, the calculation of the dn̄τσ

dR term is complicated by the
R dependence of the overlap matrix O [Eq. (27)]. In practical
applications the derivative of the density matrix with respect to
the ionic position R is thus approximated to the change of the
unnormalized nτσ via the derivative of the projector function
which is already present in the PAW force [Eq. (39)]:

F int 
 V σ
int[n̄

τσ ] · dnτσ

dR
. (41)

Taking a derivative of the −Tr(V int[n̄τσ ] · nτσ ) term in Eq. (32)
with respect to R leads to a term −V int[n̄τσ ] · dnτσ

dR which

cancels out the term in Eq. (41) and a term − dV int[n̄τσ ]
dR · nτσ

which cancels out the implicit change of V int[n̄τσ ] term in
Ĥ σ

U .
The force functional using Wannier functions can be

derived in a similar way as the projector functions except that
the dnτσ

dR term needs to be computed explicitly in terms of the
change of Wannier functions with R. However, we have not yet
implemented this. Instead, we have determined the minimum
energy structure in the phase space of pressure and bond length
difference as defined in our previous paper [13].

V. APPLICATION TO STRUCTURAL PROPERTIES
OF RARE-EARTH NICKELATES

A. Overview

In following sections we investigate the general issues of
interest in this paper, namely different correlated orbital sets
(projector vs Wannier) and background electronic structure
methods (DFT+U vs SDFT+U), in the specific context of
the structural properties of the rare-earth nickelates, RNiO3.
In these materials the basic structural motif is the NiO6

octahedron. At some values of temperature, pressure, and R,
the materials exhibit a uniform phase in which all octahedra
have approximately the same mean Ni-O bond length. In
other parameter regimes the materials exhibit a two-sublattice
disproportionated phase in which the octahedra on one
sublattice have a mean Ni-O bond length ∼0.1 Å shorter
than the octahedra on the other sublattice. The materials are
important for the present study because this basic structural
property is closely linked to a fundamental electronic property,
namely whether the material is a metal or a correlation-driven
site-selective Mott insulator [32,40]. This linkage means that
obtaining a correct description of the structural properties
poses a critical test for the electronic structure methods.

Our previous studies [12,13] showed that (S)DFT+U
does not provide a quantitatively accurate description of the
experimental structural and metal-insulator transition phase
diagram of RNiO3 series. A particular difficulty is the
prediction that the ambient-pressure ground state of LaNiO3

is bond-disproportionated and insulating when the actual
material has a non-disproportionated R3̄c structure and is
metallic. A closely related deficiency of the DFT+U method is
an overestimation of the critical pressure of the metal-insulator
transition for materials where the ambient pressure ground
state is insulating. DFT+DMFT methods produced much bet-
ter results. It is also the case that DFT+U (and DFT+DMFT)
wrongly predict that the ground state is ferromagnetic.

However the trends found in the DFT+U calculations
were found to track the trends found in the DFT+DMFT
calculations. For example the DFT+U T → 0 structural phase
boundary in the pressure-tolerance factor plane was offset
by a certain pressure from the DFT+DMFT phase boundary,
indicating that the difficulty is simply that the DFT+U
methods overestimate (to a considerable degree) the stability
of the insulating state. Thus since the aim of the current
investigation is to understand how different formulations of
the theory affect basic issues of structure and energetics, rather
than to accurately model material properties, we can use the
+U approximation as a flexible and inexpensive computational
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FIG. 1. (Color online) Average Ni-O bond length difference δa

as a function of volume computed using the GGA functional with
DFT+U (top panel) and SDFT+U (lower panel) for LuNiO3 (red
square), NdNiO3 (blue diamond), and LaNiO3 (green circle). U =
5 eV and J = 1 eV are used. The same orthonormalized projector
method is used to construct the correlated subspace in all cases. V0 is
the zero-pressure volume computed for the given compound by the
given method.

laboratory with the expectation that the similarity of trends
noted above suggests that the general findings will be
applicable to DFT+DMFT as well.

We present results computed as described in the Appendix.
In the current paper, we use the Vienna Ab initio Simulation
Package (VASP) [39,41] which adopts the PAW formalism.
For the exchange-correlation DFT functional, we use a gener-
alized gradient approximation (GGA) with the Perdue-Burke-
Ernzerhof (PBE) functional [42] and also adopt a local density
approximation (LDA) if necessary. We take the correlated
orbitals to be atomic-like Ni-centered d orbitals using the
projector method and assume the additional interactions have
the form given in Eq. (3). Unless otherwise specified, we use
U = 5 eV and J = 1 eV for all computations.

We present results for three members of the material family:
LuNiO3 (strong insulator at ambient pressure), NdNiO3

(insulating but near the phase boundary at ambient pressure),
and LaNiO3 (metallic at ambient pressure). In the rest of this
section we introduce the materials and compare the DFT+U
and SDFT+U results using both the GGA and LDA functionals
for bond lengths and energetics. In the following section we
discuss the projector vs Wannier issue and in a third section
present implications for computed phase diagrams.

B. Bond disproportionation vs volume

We used the VASP implementation of (S)DFT+U using
the GGA functional to perform full structural relaxations
of the three compounds from the low-symmetry bond-
disproportionated structure with the unit cell volume con-
strained to take particular values (see Fig. 1). The correlated
orbital basis set was treated using the same orthonormalized
projector for all calculations [note that the orthonormalization

of the basis set required that we modify the VASP energy
and force formulas according to Eq. (27)]. In many cases
a disproportionated structure with two inequivalent NiO6

octahedra was found; for these cases we computed the
difference δa in mean Ni-O bond length between Ni sites on
different sublattices. Generically if δa �= 0 the band structure
exhibits a gap at the fermi level (for very small disproportion-
ation amplitudes the gapping may not be complete), but for
simplicity of presentation we do not consider the electronic
structure here.

Results are shown in Fig. 1. At positive compression
(V − V0 < 0) the differences between SDFT+U and DFT+U
are quantitative, but large. We see that consistently across
the material family SDFT+U predicts a higher δa at given
compression and similarly predicts that a higher critical
compression is needed to drive the structural transition (δa →
0) than does DFT+U. However, at negative compression
(V − V0 > 0) the difference is qualitative: DFT+U predicts
a monotonic increase of δa values as (V − V0)/V0 increases
while SDFT+U calculations indicate a reduction of δa as the
cell volume is increased and ultimately a reentrant structural
transition (seen in the data for LaNiO3 and expected for the
other materials from the downward curvature).

Figure 2 shows the effect of varying the Hund’s coupling
J on the computed bond disproportionation for LaNiO3. In
the DFT+U calculations, increasing J from 0 to 1 eV has a
dramatic effect, while a further increase to 2 eV has a weaker
effect, suggesting a saturation as J is increased. On the other
hand, the SDFT+U results show almost no J dependence,
indicating that the spin-dependent exchange potential in SDFT
already effectively includes a large on-site J and suggesting
that J is not needed when performing SDFT+U calculations.
This could be problematic for SDFT+DMFT calculations,
where the dynamical effect of J is typically important.

The upper portions of the two panels of Fig. 2 further show
that within DFT+U the choice of DFT method (LDA vs GGA)
produces quantitative but not qualitative differences over the
volume range investigated, with in particular the LDA+U
exhibiting a smaller δa at given J and volume, consistent with
the known tendency of the PBE GGA functional used here
to overestimate magnetism [43]. Alternatively, in SDFT+U
the choice of DFT method produces a qualitative difference,
with the SGGA+U method indicating reentrance of the non-
disproportionated phase at a small positive relative volume
while no indication of reentrance is found in the LSDA+U
calculations.

Interestingly, the J = 2 eV GGA+U calculations also
suggest that reentrance of the undistorted phase would occur
at larger relative volumes, consistent with the notion that
the SDFT methods imply a large (perhaps excessively large)
J already at the SDFT level. Taken together these results
also suggest that the mathematical origin of the reentrant
transition is a (presumably unphysical) effect of large J. The
disproportionated phase may be understood as a hybridization
density wave corresponding to relatively strong Ni-O bonding
at the short-δa site [12] so although the precise connection is
not clear at this point we may speculate that the reentrance is
related to unphysically large spin dependence of level shifts
of the Ni-d relative to O-p states, weakening the Ni-O singlet
bond that produces the distortion.
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FIG. 2. (Color online) Bond disproportionation δa plotted
against relative volume change (V − V0)/V0 computed for LaNiO3

for different Hund’s coupling J at U = 5 eV using both (a) GGA
and (b) LDA functionals and different methods indicated in the
legends (DFT+U vs SDFT+U). The same orthonormalized projector
method is used to construct the correlated subspace in all cases. V0

is the zero-pressure volume computed using the given method and
J = 1 eV. The change of V0 at different J is negligible for SDFT+U
and rather notable for DFT+U (see Fig. 5) but it does not affect any
results discussed here.

To elaborate the fact that SGGA+U has a similar effect to
GGA+U with a large J , we show in Fig. 3 the trace of the
site-resolved occupancy matrix, Nd , as a function of volume
comparing GGA+U with J = 2 eV (square dots), J = 1
eV (pentagon dota), and SGGA+U with J = 0 eV (circular
dots). We can see that both SGGA+U with J = 0 eV and
GGA+U with J = 2 eV produce qualitatively similar physics;
i.e., the Nd difference between two Ni ions is reduced as the
volume increases and converges to the value of an undistorted
structure. The overall behavior is consistent with the qualitative
feature of the phase diagram in Fig. 2(a). Also this is contrary
to GGA+U with J = 1 eV where the Nd difference barely
changes for the expanded volume. Nevertheless this reentrant

FIG. 3. (Color online) The trace of the site-resolved occupancy
matrix of the d electrons, Nd , per Ni atom computed for LaNiO3 as a
function of volume using GGA+U with J = 1 eV (pentagon dots),
J = 2 eV (square dots), and SGGA+U with J = 0 eV (circular dots).
Two Nd values indicate two Ni atoms with distinct Ni-O bond lengths.

transition occurs rather rapidly for SGGA+U compared to
GGA+U with J = 2 eV. We believe different double-counting
correction forms in two methods can contribute to this effect;
however the detailed analysis of the origin is beyond the scope
of our paper.

The interplay between the DFT functional (LDA vs GGA),
the value of Hund’s J , and the physics of the disproportionation
instability are also evident in the study of the magnetic
moments presented in Fig. 4. The DFT+U results reveal
the expected dependence of magnetic moment on J , with
magnetic moment increasing with J with the dependence
becoming weaker as the saturation value M = 1 μB is reached
and the critical volume for the magnetic transition also being
J -dependent. The difference between LDA+U and GGA+U
results reflects the stronger tendency toward magnetism char-
acteristic of the PBE-GGA functional. In effect, PBE-GGA
already contains a certain degree of local exchange. In contrast,
SDFT+U calculations in both GGA and LDA produce large
moments at all volumes, and with negligible J dependence.

VI. ENERGETICS

In this section, we compare the DFT and SDFT predictions
for energies. We restrict our attention to the GGA and
SGGA density functionals, define the correlated states via
orthonormalized projectors, and focus on LaNiO3. For each
relative volume, the structure was relaxed and then the energy
was evaluated. Figure 5 displays the dependence of the total
energy on the normalized volume difference for different J

values.
As found in the previous section’s analysis of the dispropor-

tionation amplitude and magnetic moment, substantial differ-
ences between DFT+U and SDFT+U are found. The DFT+U
energy curve depends substantially on J , changing rapidly as
J is increased from zero and saturating as J becomes large.
Remarkably even the equilibrium volume is J -dependent. The
SDFT+U energy has negligible J dependence and is similar to
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FIG. 4. (Color online) The magnetic moments per Ni atom in
LaNiO3 obtained using different J as a function of pressure using both
(a) GGA and (b) LDA functionals and different methods indicated
in the legends (DFT+U vs SDFT+U). The same orthonormalized
projector method is used to construct the correlated subspace in
all cases. V0 is the zero-pressure volume computed using the given
method and J = 1 eV.

the J = 2 eV DFT+U result again suggesting that the SDFT
exchange correlation functional in effect contains a J which
(for the PBE-GGA case studied here) is substantially larger
than the J ∼ 1 eV values believed to be physically reasonable.

Figure 6 presents a decomposition of the energy into the
DFT contribution [EDFT ; panel (a)] and the correlation correc-
tion (CC) contribution [E�KS + Eint; panel (b)], as defined in
Eq. (10), for DFT+U (upper half of each panel) and SDFT+U
(lower half of each panel). The DFT term EDFT contains
the structural contribution while the CC term expresses the
correlation physics. EDFT is not monotonic in unit cell
volume, expressing the basic physics of chemical bonding.
Alternatively, the CC contribution decreases monotonically as
the volume is increased for both DFT+U and SDFT+U and
for all J values, expressing the enhancement of correlation

FIG. 5. (Color online) The total energy of LaNiO3 as a function
of relative volume difference computed using GGA+U (top) and
SGGA+U (bottom) with an orthonormalized projector definition of
the correlated orbitals at J values indicated. At each volume and for
each method the structure is relaxed and the energy of the relaxed
structure is presented. The zero of energy is chosen at a compression
of 5% in all curves.

occurring when hybridization is decreased and showing that
the equilibrium volume predicted by the correlated calculation
is larger than that predicted from the DFT contribution
alone.

Figure 6 indicates that for the SDFT+U method neither
EDFT nor the CC term has significant J dependence because
the SDFT method already includes a large local exchange
contribution. Alternatively, in the DFT+U calculation both
terms have some J dependence. The DFT+U CC term changes
dramatically as J is increased from 0 to 1 eV, accounting for
the noticeable change of DFT+U energetics from J = 0 to
1 eV in Fig. 5 but does not change much as J is further
increased because the moment is saturated (see Fig. 4). It is
also interesting to note that the DFT+U CC energy at J � 1
eV is comparable to the SDFT+U CC energy at J = 0, further
confirming the large value of J implicit in the SDFT method. In
the DFT+U method, some dependence of EDFT on J occurs
as J is increased from 1 eV to 2 eV, and it is interesting to
note that this is the J range where suggestions of reentrance
are visible in the DFT+U calculation. This behavior again
indicates that the unusual reentrant behavior is related to a
rearrangement of the band structure by an unphysically large
Hund’s coupling.

As extensively discussed elsewhere [44,45], the occupancy
Nd of the correlated orbitals provides useful insights into the
physics of strongly interacting electron systems. Figure 7
displays the d occupancies computed for LaNiO3 for the
parameters whose energies are shown in Fig. 6. Within
DFT+U, increasing the Hund’s coupling J leads to a decrease
in Nd , a signal of stronger correlation arising from effectively
smaller p-d hybridization. In SDFT+U the correlations in this
sense are already stronger at the SDFT level (i.e., SDFT+U
yields smaller Nd ), and adding additional J does not change
the situation.
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FIG. 6. (Color online) Contributions to DFT+U energy func-
tional [cf. Eq. (10)] computed for LaNiO3 as a function of relative
volume. (a) The DFT contribution and (b) the correlation correction
CC contribution (E�KS + Eint) are decomposed from Fig. 5 using
the same relaxed structure at each volume and compared for different
methods [DFT+U (the top panel) vs SDFT+U (the bottom panel)]
and different J values.

VII. CHOICE OF CORRELATED ORBITAL

In this section we study the effect of the choice of correlated
orbital on the calculated results. The DFT+U method is used;
SDFT+U is not considered in this section. Figure 8 presents
the bond disproportionation amplitude δa versus reduced
volume for different rare-earth nickelates using either MLWF
(filled symbols, solid lines) or orthonormalized projectors
(open symbols, dashed lines) for the correlated subspace. The
qualitative trends of δa as a function of reduced volume are
similar for both correlated orbitals. Substantial differences
appear only for very large compression, where the Wannier
approach enhances the tendency to the bond disproportionated
states, though only for NdNiO3 and LaNiO3.

The origin of the difference is not clear at present, but may
have to do with the fact that size of the Wannier function

FIG. 7. (Color online) The occupancy of the correlated orbitals
expressed as the number of d electrons Nd per Ni atom computed
for LaNiO3 at J values indicated for GGA+U (the top panel) and
SGGA+U (the bottom panel).

varies as the volume and the bond length difference change,
while the projectors are defined using a fixed radius. Figure 9
displays the Wannier spread for NdNiO3 at (V − V0)/V0 =
−12.5% as a function of structural distortion. NdNiO3 at
this volume shows noticeably different δa values between
for MLWF (∼ 0.06 Å) and for the projector (∼ 0.03 Å).
As δa increases, the Wannier orbital for Ni A (large Ni-O
octahedron) becomes more localized (smaller spread) and
Ni B (small Ni-O octahedron) shows the more delocalized

FIG. 8. (Color online) The average Ni-O bond length difference
δa as a function of reduced volume computed for materials indicated
using DFT+U as implemented with the energy functional of Eq. (10).
Both maximally localized Wannier functions (filled symbols, solid
lines) and orthonormalized projectors (open symbols, dashed lines)
are compared. Interaction parameters of U = 5 eV and J = 1 eV are
used for the projector-based calculations while the equivalent values
u = 6.14 eV and j = 0.71 eV (Slater-Kanamori parametrization) are
correspondingly used for the Wannier construction.
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FIG. 9. (Color online) The spread of Ni eg maximally localized
Wannier function (MLWF) as a function of the bond length difference
δa for NdNiO3 at (V − V0)/V0 = −12.5%. Ni A (square dots) means
the Ni ion with the longer Ni-O bond length and Ni B (circular dots)
means the one with the shorter bond length. The Wannier spread
is defined by

√
〈r2〉 − 〈r〉2 and the value is averaged over two eg

orbitals.

(larger spread) Wannier orbital. Compared to the projectors,
therefore, the Ni A site may be more susceptible to the Mott
transition and the Ni B electrons are more bound to nearest
O holes enhancing a tendency toward the site-selective Mott
transition [32]. This difference between the MLWF and the
projector is demonstrated in Fig. 10 for the DFT+U partial
density of states computed with the fixed NdNiO3 structure
[δa = 0.06 Å, (V − V0)/V0 = −12.5%]. The site-selective
Mott gap is indeed larger for the MLWF (the top panel)

FIG. 10. (Color online) The partial density of states for the bond
disproportionated NdNiO3 [δa 
 0.06 Å, (V − V0)/V0 = −12.5%]
computed using DFT+U with the correlated orbital of the MLWF
(top) and the projector (bottom). Ni A d (with the longer Ni-O bond
length), Ni B d (with the shorter Ni-O bond length), and O p data are
shown for comparison. The density of states is spin averaged for up
spin and down spin.

FIG. 11. (Color online) Average Ni-O bond length difference δa

graph as a function of volumes obtained using DFT+U. The normal-
ization effect of the correlated orbital is investigated by comparing
both the orthonormalized projector-correlated orbital (filled symbols,
solid lines) and the un-normalized projector (open symbols, dashed
lines). LuNiO3 (red square), NdNiO3 (green diamond), and LaNiO3

(blue circle) results are displayed for comparison.

compared to the projector (the bottom panel); therefore the
bond disproportionated structural phase can be energetically
more stable for the MLWF. Another difference between the
MLWF and the projector is that the leading edges of the
site-resolved excitation gaps for the two Ni ions are different
in the MLWF while they are almost same for the projector.

We now turn to the effect of orthonormalization, comparing
in Fig. 11 structural relaxation calculations performed using
the orthonormalized projector orbital to calculations and
performed using the unnormalized projector implemented in
VASP. Normalization has a particularly important effect in the
small-volume region of LuNiO3, where the critical pressure
calculated using the unnormalized projector is overestimated
and probably incorrect. However, normalization has no
noticeable effect on the structural relaxation of LaNiO3. As
the volume is expanded the consequences of normalization
are seen to be minor. This discrepancy in the small-volume
region may arise from an overestimate of the spectral weight
inside the Ni atomic sphere, leading to a misestimate of the
correlation energy.

VIII. THE PHASE DIAGRAM OF RNiO3 AND THE
EQUILIBRIUM VOLUME V0

In this section, we compute the structural phase digrams
and equilibrium volume V0 of the rare-earth nickelates RNiO3

obtained using DFT+U and SDFT+U as functions of the
reduced volume for different R ions. MLWF and project
definitions of the correlated orbitals are also explored.

Figure 12 displays the structural transition phase diagram
of rare-earth nickelates RNiO3 in the plane of reduced volume
(V − V0)/V0) and choice R of rare-earth ion computed using
the different beyond-DFT methods discussed in this paper.
The structural transition is between the P 21/n structure
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FIG. 12. (Color online) Structural phase diagram of the rare-
earth nickelates as a function of the volume compression and rare-
earth ion, computed using DFT+U (square dots) and SDFT+U (circle
dots). The unnormalized projector (open dots) and orthonormalized
projector (filled dots) are compared for both methods. The MLWF-
correlated orbital result (diamond dot) is also shown for DFT+U,
yielding some similarity to the phase boundary to the orthonormalized
projector. The experimental data (black dash-dotted lines) are also
given for comparison [46] (see also Refs. [12,13]).

(δa > 0) and Pbnm structure (δa = 0) for all RNiO3 except
rhombohedral LaNiO3. For LaNiO3, the transition associated
with the bond disproportionation separates the R3 structure
(δa > 0) and the R3̄c structure (δa = 0).

All DFT+U and SDFT+U results produce critical com-
pression for the transition which is too large relative to
experiment. (DFT+DMFT produces results in much better
agreement with experiment [12,13]). The SDFT+U method
(red circular dots) exhibits more rapid variation of the critical
compression with change of R ions than does DFT+U (purple
square dots).

The effect of the orthonormalization in a correlated orbital
varies depending on the functional. SDFT+U implemented
using the unnormalized projector as adopted in VASP (cir-
cular open dots and dashed lines, also shown in Ref. [12])
moderately reduces the critical pressures (favoring the δa > 0
region) compared to the same SDFT+U implemented using
the orthonormalized projector (circular filled dots and solid
lines). In contrast, DFT+U with the orthonormalized projector
(square filled dots and solid lines) more substantially moves the
critical line toward the structural phase with δa = 0 (Pbnm)
for the heavy rare earths.

DFT+U implemented using the MLWF basis set (blue
diamond dot and solid line, also shown in Ref. [13] with
u = 5 eV and j = 1 eV of Slater-Kanamori parametrization)
also produces a similar phase boundary to the orthonormalized
projector DFT+U calculation compared to other methods.
Therefore, we deduce that Wannier and orthonormalized
projectors yield similar behavior.

The compression (vertical axis) of the structural phase
diagram in Fig. 12 is defined as the relative change of volume

FIG. 13. (Color online) Equilibrium volume V0 calculated using
SGGA (filled symbols) and LSDA (open symbols) for RNiO3

with R = La, Sm, Nd, and Lu using DFT+U (square dots) and
SDFT+U. For SDFT+U, orthonormalized projector (green diamond)
and unnormalized projector (red circle) calculations are compared.
The experimental volumes at the ambient pressure are depicted by a
black dashed line with open pentagonal dots. LDA(+U) results are
shown only for LaNiO3 since the pseudopotentials for other rare-earth
ions except La are not available.

compared to the equilibrium volume V0 computed within each
theoretical method. V0 is determined as the volume of the
minimum energy from an energy vs volume curve and the
atomic positions at each volume are obtained by minimizing
the interatomic forces. Results are displayed in Fig. 13. First,
we discuss results obtained using pure SDFT within the LSDA
and SGGA approximations. The calculated V0 with GGA
exchange-correlation functional (filled symbols) is larger than
the experimental one (dashed line), while the V0 obtained with
the LDA exchange-correlation functional (open symbols) is
smaller than the experimental value. This behavior is well
known in the DFT literature.

We next observe that the calculated V0 values computed
using SDFT+U are rather sensitive to the orthonormalization
of correlated orbitals. The orthonormalized projectors lead to
substantially larger equilibrium volumes than the unnormal-
ized projectors, leading to better agreement with experiment
for LDA based functionals and worse agreement for GGA,
though in neither method is the agreement particularly good.

IX. CONCLUSION

We studied different formulations of DFT+U and SDFT+U
in the context of total energy calculations in the rare-earth
nickelates. The correlated subspace was constructed in three
different ways: maximally localized Wannier functions, or-
thonormalized projectors, and non-orthonormalized projec-
tors. We computed the Ni-O bond length difference δa as
a function of pressure, the structural phase diagram describing
the transition between the bond-disproportionated structure
(δa > 0) and the no bond-disproportionated structure (δa = 0)
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as functions of pressure and the rare-earth ions, and also the
equilibrium volume.

SDFT+U and DFT+U show qualitatively different be-
havior in some circumstances. In particular, the SGGA+U
results of the structural transition in the rare-earth nickelates
show a reentrant transition with pressure, and this is not
observed in GGA+U calculations that are performed with a
reasonable on-site exchange J = 1 eV. However, increasing J

to 2 eV in GGA+U produced qualitatively similar results to
SGGA+U although the reentrant transition occurs rapidly for
SGGA+U, implying that the SGGA spin-polarized exchange
correlation functional results in a large effective on-site
exchange. SDFT+U based on the LSDA exchange-correlation
functional results in a more reasonable effective J , meaning
that LSDA+U results using J = 0 are similar to LDA+U
with J ∼ 1 eV. The reentrant transition at negative pressure
does not occur within DFT+U calculations using the LDA
functional for J � 2 eV. Our results suggest that there is no
need to use an on-site exchange when performing SDFT+U
(i.e., set J = 0), and this is effectively equivalent to using
the approach of Dudarev et al. [47]. Additionally, our results
imply that the SGGA should be used with caution given its
overemphasis of local exchange. More generally, DFT+U with
an appropriately chosen J can largely recover the qualitative
behavior of SDFT+U.

We demonstrated that orthonormalized projectors behaved
rather similarly to MLWF near ambient pressure, although
notable differences are evident for NdNiO3 and LaNiO3 under
large pressures. Additionally, the unnormalized projector, as
implemented in VASP, can lead to notably different results,
especially at high pressures. Within SDFT+U, the equilibrium
volumes are substantially increased when computed using the
orthonormalized orbitals compared to unnormalized orbitals.

Given that (S)DFT+U is equivalent to (S)DFT+DMFT
when the DMFT quantum impurity problem is solved within
Hartree-Fock, we expect the general findings of this study to be
applicable to (S)DFT+DMFT as well. Given our finding that
DFT+U with an appropriately chosen J can largely recover
the qualitative behavior of SDFT+U, our work supports the
long held tradition of basing dynamical mean field extensions
on DFT theories rather than SDFT theories. This is particularly

important in cases where the dynamical effects of J are crucial.
Our results have broad implications for the application of
SDFT+U, given that in the nickelates the choice of SDFT
functional leads to dramatic differences in the effective on-site
exchange interaction. A very similar conclusion was reached in
a study of the spin crossover molecule Fe(phen)2(NCS)2 [48].
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APPENDIX: COMPUTATIONAL DETAILS

The (S)DFT+U formalism is implemented in VASP using
the projector functions |p̃〉 as a correlated orbital set. The
Hamiltonian for (S)DFT+U is given by Eq. (30), and the
total energy and force equations are also derived in Eq. (32)
and Eq. (38). However, the VASP implementation adopts
the unnormalized density matrix nτσ as Eq. (24). In the
current paper, we compare the VASP implementation to the
orthonormalization of nτσ to give rise to n̄τσ as derived in
Eq. (27). Fortunately, the VASP implementation provides both
DFT+U (LDAUTYPE = 4) and SDFT+U (LDAUTYPE = 1)
methods.

For performing the summation of k points in the Brillouin
zone, we used the tetrahedron method [49]. When using
projector-correlated orbitals, a k-point mesh of 6 × 6 × 6
(for the Pbnm and P 21/n structures) and 8 × 8 × 8 (for the
LaNiO3 R3̄c and R3 structures) are used with an energy cutoff
of 600 eV. When using the Wannier functions as correlated
orbitals, a k-point mesh of size 10 × 10 × 10 is used for Pbnm

and P 21/n, while 16 × 16 × 16 for R3̄c and R3.
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