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Since the seminal work of Marzari and Vanderbilt, maximally localized Wannier functions have become widely
used as a real-space representation of the electronic structure of periodic materials. In this paper we introduce
selectively localized Wannier functions which extend the method of Marzari and Vanderbilt in two important
ways. First, our method allows us to focus on localizing a subset of orbitals of interest. Second, our method allows
us to fix centers of these orbitals, and ensure the preservation of the point-group symmetry. These characteristics
are important when Wannier functions are used in methodologies that go beyond density functional theory by
treating a local subspace of the Hamiltonian more effectively. Application of our method to GaAs, SrMnO3,
and Co demonstrates that selectively localized Wannier functions can offer improvements over the maximally
localized Wannier function technique.
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I. INTRODUCTION

Solving the Schrödinger equation in crystalline solids
typically relies on the use of the translation group to block-
diagonalize the Hamiltonian, yielding Bloch states ψnk, where
k is a wave vector in the first Brillouin zone of the solid
and n ∈ {1,2 . . . J } is a band index. However, it is often both
physically and computationally desirable to have a real-space,
atomic-like representation of the Hamiltonian. An approach
to achieve this was introduced by Wannier in 1937 [1].
Considering a single band, Wannier introduced the following
transformation:

|Rn〉 = V

(2π )3

∫
dke−ik·R|ψnk〉, (1)

so that

|ψnk〉 =
∑

R

eik·R|Rn〉, (2)

where R is any lattice vector and V is the unit cell volume.
The function 〈r|Rn〉 is referred to as a Wannier function.

Because each Bloch function ψnk can be adjusted by an
arbitrary phase eiϕnk , the Wannier functions are not uniquely
defined, and we can rewrite Eq. (1) as

|Rn〉 = V

(2π )3

∫
dke−ik·Reiϕnk |ψnk〉. (3)

If Wannier functions are constructed from a set of J bands,
there is an even greater freedom, since at each k point we
may use an arbitrary unitary transformation of band states.
Denoting an arbitrary J × J unitary matrix as Uk, then at a
given k point we are free to mix the Bloch states as follows:

|ψ̃nk〉 =
J∑

m=1

Uk
mn|ψmk〉, (4)

by which we can define generalized Wannier functions:

|Rn〉 = V

(2π )3

∫
dke−ik·R|ψ̃nk〉. (5)

This “gauge freedom” may be exploited to define Wannier
functions that are optimized for particular purposes. One
approach, pioneered by Marzari and Vanderbilt [2], is to
choose the Uk such that the complete set of Wannier functions
are as localized as possible in the position representation.
Specifically, if we let

r̄n = 〈0n|r|0n〉 (6)

and

〈r2〉n = 〈0n|r2|0n〉, (7)

then we can define the total spread functional � of the J

Wannier functions |Rn〉 as

� =
J∑

n=1

[〈r2〉n − r̄2
n

]
(8)

and choose the matrices Uk by minimizing � [2]. The
functions resulting from this procedure are termed maximally
localized Wannier functions (MLWFs). In addition to intro-
ducing the MLWF method, Marzari and Vanderbilt introduced
a gradient descent method for performing the minimization.

While MLWFs are now very widely used, the global spread
function given in Eq. (8) is not necessarily optimal for all uses.
In recent years attention has focused on methodologies that go
beyond density functional theory (DFT) by more appropriately
treating electronic correlations in some relevant local subspace
of the Hamiltonian. For example, in the DFT+U and DFT
plus dynamical mean field theory (DMFT) methods one treats
beyond DFT correlations in a local subspace corresponding to
atomic-like d (for transition metals or transition-metal oxides)
or f (for rare-earth or actinide intermetallics) orbitals. In these
applications, it is important to have a correct local description
of the local subspace, including both the correct location of
the centers of the correlated orbitals and the correct point
symmetry, but the properties of the other degrees of freedom
are irrelevant. The MLWF procedure, which treats all orbitals
on an equal footing, may give a suboptimal description of the
orbitals of interest and in particular does not guarantee that
the centers and point symmetries of the orbitals of interest are

1098-0121/2014/90(16)/165125(10) 165125-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.165125


WANG, LAZAR, PARK, MILLIS, AND MARIANETTI PHYSICAL REVIEW B 90, 165125 (2014)

correctly described. It is important to note that the method of
Wannier functions for entangled energy bands [3] also does
not fulfill these goals. In this paper we develop a technique
which allows the selective localization of a subset of Wannier
orbitals, with specified Wannier center and point symmetry.

The remainder of this paper is outlined as follows. In Sec. II,
we outline our methodology. In Sec. III, we illustrate the utility
of our method in the one-dimensional chain. In Sec. IV, we
present applications to GaAs, SrMnO3, and Co. In Sec. V,
we analyze the Hamiltonian in the Wannier basis for SrMnO3

and Co.

II. METHOD

Here we derive all of the relevant equations for our
formalism. For simplicity we present a construction in which
the total number of Wannier functions is equal to the total
number, J, of bands under consideration. We believe that our
method can be extended to incorporate the inner and outer
window construction of Souza et al. [3] but this extension
is not attempted in this paper because it does not appear to
be necessary for the applications we consider. We formulate
the problem using a “band window” construction which in
principle requires no assumptions about separation of bands.
However, the applications we envisage (for example to DMFT
calculations) require a basis set that faithfully represents
the charge density. Therefore, it is essential that the lowest
included band is separated from lower bands by an energy
gap, and in what follows we choose windows such that this is
the case.

In the rest of this section we first describe the selective
localization of a subset of J ′ < J orbitals, then we present
the procedure for fixing the centers of the localized orbitals
and finally explain how we constrain the symmetry of the
localized orbitals. In the remainder of the paper we use MLWF
to refer to the maximal localization method [2,4], SLWF to
refer to the selectively localized Wannier method presented
here; SLWF+C refers to the same method with centers fixed;
SLWF+CS refers to the same method with both centers and
symmetries fixed, as described in Appendix A. Our SLWF
method produces two types of Wannier functions: objective
Wannier functions (OWFs) which have a minimum cumulative
spread and the remaining Wannier functions to which we
assign no specific name.

A. Selective localization

We construct a subset of localized orbitals by minimizing
the following functional:

� =
J ′∑

n=1

[〈r2〉n − r̄2
n

]
, (9)

where J ′ � J is the number of objective Wannier functions
that we choose; recall that J is the total number of Wannier
functions, or equivalently the number of bands considered.
Our method reduces to MLWF when J ′ = J .

Marzari and Vanderbilt showed [2] that in the case J ′ = J ,
� can be decomposed into the sum of two terms, one of which
is invariant under arbitrary unitary transformations. However,

when J ′ < J , this is no longer the case, but the minimization
of the functional can still be accomplished by methods very
similar to those of Marzari and Vanderbilt.

We write � = �IOD + �D , where

�IOD =
J ′∑

n=1

[
〈r2〉n −

∑
R

|〈Rn|r|0n〉|2
]

, (10)

�D =
J ′∑

n=1

∑
R�=0

|〈Rn|r|0n〉|2. (11)

Following Ref. [2] we recast the expression as a discretized
sum in k space:

�IOD = 1

N

J ′∑
n=1

∑
k,b

wb

(
1 − ∣∣Mk,b

nn

∣∣2)
, (12)

�D = 1

N

J ′∑
n=1

∑
k,b

wb

(
Im ln Mk,b

nn + b · r̄n

)2
, (13)

where Mk,b
mn ≡ 〈umk|unk+b〉, b are vectors which connect a k

point to its near neighbors, and wb is a weight for each |b| = b

such that
∑

b wbbαbβ = δαβ (see Appendix B of Ref. [2] for a
detailed explanation).

Under the infinitesimal unitary transformation, Uk
mn =

δmn + dW k
mn, where dW k† = −dW k, the wave functions

transform as

|unk〉 → |unk〉 +
J∑

m=1

dW k
mn|umk〉 (14)

so that

d�IOD = 4

N

∑
k,b

wb

J ′∑
n=1

J∑
m=1

Re
(
dW k

nmRk,b
mn

)
, (15)

d�D = − 4

N

∑
k,b

wb

J ′∑
n=1

J∑
m=1

Im
(
dW k

nmT k,b
mn

)
, (16)

where

Rk,b
mn = Mk,b

mn Mk,b∗
nn , (17)

T k,b
mn = R̃k,b

mn

(
Im ln Mk,b

nn + b · r̄n

)
, (18)

R̃k,b
mn = Mk,b

mn

/
Mk,b

nn . (19)

Thus, the gradient of the spread functional is

Gk
mn = d�

dW k
nm

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
∑

b wb

(
A

[
Rk,b

mn

] − S
[
T k,b

mn

])
m � J ′,n � J ′,

−4
∑

b wb

(Rk,b∗
nm

2 + T k,b∗
nm

2i

)
m � J ′,n > J ′,

4
∑

b wb

(Rk,b
mn

2 − T k,b
mn

2i

)
m > J ′,n � J ′,

0 m > J ′,n > J ′,

(20)
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where A [Rk,b
mn ] = (Rk,b

mn − Rk,b∗
nm )/2, S [T k,b

mn ] = (T k,b
mn +

T k,b∗
nm )/2i.

Following Ref. [2], we minimize � by updating Uk in small
steps according to exp[dW k], choosing

dW k = εGk, (21)

where ε is a positive infinitesimal. We thus have

d� =
∑

k

J∑
m,n=1

Gk
mndW k

nm

= −ε
∑

k

J∑
m,n=1

∣∣Gk
mn

∣∣2
, (22)

using the identity G† = −G. Thus, it is guaranteed that
d� � 0. This allows us to iteratively update the unitary matrix
until a converged solution is attained. In practice, we fix the
step size by choosing ε = α/4w, where w = ∑

b wb, and
minimize the spread using a nonlinear conjugate gradient
method [5]. While this method finds only local minima, we
have found in practice that if a reasonable starting point
is chosen, physically reasonable minima are found and we
believe these are global minima based on substantial testing.

B. Fixing centers

To fix the centers of our objectively localized Wannier
functions we introduce a Lagrange multiplier to constrain the
Wannier center r̄n:

λc

J ′∑
n=1

(r̄n − r0n)2, (23)

where r0n is the desired center for the nth Wannier function,
and λc is a Lagrange multiplier for this constraint. Here J ′ is
chosen to allow for a selective localization. We impose this
constraint into � which is defined by Eq. (9) and introduce a
new target functional:

�c =
J ′∑

n=1

[〈r2〉n − r̄2
n + λc(r̄n − r0n)2

]
. (24)

We decompose �c in a manner similar to that in the previous
subsection, but with an additional term �c,ν that results from
the imposed constraint:

�c = �c,IOD + �c,D + �c,ν, (25)

where

�c,IOD =
J ′∑

n=1

[
〈r2〉n − (1 − λc)

∑
R

|〈Rn|r|0n〉|2
]

, (26)

�c,D = (1 − λc)
J ′∑

n=1

∑
R�=0

|〈Rn|r|0n〉|2, (27)

�c,ν = λc

J ′∑
n=1

r2
0n − 2λc

J ′∑
n=1

r0n · r̄n. (28)

We can recast the expression as a discretized sum in k space:

�c,IOD = 1

N

J ′∑
n=1

∑
k,b

wb

[
1 − ∣∣Mk,b

nn

∣∣2 + λc

(
Im ln Mk,b

nn

)2]
,

(29)

�c,D = (1 − λc)
1

N

J ′∑
n=1

∑
k,b

wb

(
Im ln Mk,b

nn + b · r̄n

)2
,

(30)

�c,ν = λc

J ′∑
n=1

r2
0n + λc

2

N

∑
k,b

wbb ·
J ′∑

n=1

r0n Im ln Mk,b
nn .

(31)

Under the infinitesimal unitary transformation, we have

d�c,IOD = 4

N

∑
k,b

wb

J ′∑
n=1

J∑
m=1

[
Re

(
dW k

nmRk,b
mn

)
− λc Im ln Mk,b

nn Im
(
dW k

nmR̃k,b
mn

)]
, (32)

d�c,D = −(1 − λc)
4

N

∑
k,b

wb

J ′∑
n=1

J∑
m=1

Im
(
dW k

nmT k,b
mn

)
,

(33)

d�c,ν = −λc

4

N

∑
k,b

wbb ·
J ′∑

n=1

J∑
m=1

r0n Im
(
dW k

nmR̃k,b
mn

)
. (34)

Thus, the gradient of the functional is

Gk
c,mn = d�c

dW k
nm

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
∑

b wb

{
A

[
Rk,b

mn

] − (1 − λc)S
[
T k,b

mn

]}
−4λc

∑
b wb

[ R̃k,b
mn

2i
Im ln Mk,b

nn + R̃k,b∗
nm

2i
Im ln Mk,b

mm + b · (
r0n

R̃k,b
mn

2i
+ r0m

R̃k,b∗
nm

2i

)]
m � J ′,n � J ′,

−4
∑

b wb

[Rk,b∗
nm

2 + (1 − λc) T k,b∗
nm

2i

] − 4λc

∑
b wb

( R̃k,b∗
nm

2i
Im ln Mk,b

mm + b · r0m
R̃k,b∗

nm

2i

)
m � J ′,n > J ′,

4
∑

b wb

[Rk,b
mn

2 − (1 − λc) T k,b
mn

2i

] − 4λc

∑
b wb

( R̃k,b
mn

2i
Im ln Mk,b

nn + b · r0n
R̃k,b

mn

2i

)
m > J ′,n � J ′,

0 m > J ′,n > J ′.

(35)
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Minimizing this modified functional, we obtain Wannier
functions that are maximally localized subject to the constraint
of fixed centers. Although this constraint is satisfied at the cost
of some delocalization, we can still maintain a high degree of
localization through concurrent selective localization, as we
illustrate in the applications below.

C. Fixing symmetry

It is further possible to ensure that the Wannier functions
obtained preserve not only the desired centers, but also that
they transform as irreducible representations of the point
group, using for example the elegant group-theory-based
approach recently introduced by Sakuma [6]. More straight-
forwardly one may simply introduce additional Lagrange
multipliers, as discussed in Appendix A for the case of a
one-dimensional model system. However, we have found that
in all of the realistic examples studied in this paper orbitals
which are localized to a site with a given point-group symmetry
automatically transform as an irreducible representation of the
respective point group. We do not presently have an analytical
understanding of this empirical observation.

III. ONE-DIMENSIONAL CHAIN

To illustrate the utility of our method, we consider in this
section a one-dimensional periodic lattice with δ potential
barriers. In this system, there are an infinite number of isolated
bands. As an example, we choose to construct a manifold of 4
Wannier functions (i.e., 4 bands) with 2 objective Wannier
functions. We use a mesh with 100 k points for MLWF,
SLWF, and SLWF+C. While considering examples in which
symmetries are enforced (SLWF+CS), we use a mesh with
20 k points, due to the increased computational demands
involved in those cases. In this one-dimensional problem, we
study the following Hamiltonian:

H = −a2

2

(
d

dx

)2

+ βa
∑

j

δ(x − ja), (36)

where a is the lattice constant and β is the dimensionless
“strength” for the δ function. In practice, we choose a = 5 Å,
β = 0.6610.

Figure 1(a) shows the Wannier functions resulting from
MLWF (i.e., J ′ = J = 4). Three potential drawbacks are
apparent. First, the MLWFs are nearly equally localized, which
results in each MLWF having a relatively long tail. Second,
we observe that none of the MLWFs are centered at either
x = 0, the location of the periodic δ potential, or x = 0.5a, the
midpoint between adjacent δ functions. Third, we notice that
the MLWFs do not transform as irreducible representations of
the order 2 point group at x = 0 or x = 0.5a.

Panel (b) of Fig. 1 shows the results of selective localization
of two orbitals. Compared with MLWFs, the OWFs (solid red
and green lines) become noticeably more localized [compare
the tails of the functions in panels (a) and (b)]. The numerically
computed spread 〈(r − 〈r〉)2〉 of the most localized MLWF is
0.2853a2 while the OWF has a spread of 0.0162a2. However,
the remaining Wannier functions in the SLWF procedure,
whose localization are ignored in the minimization procedure,
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FIG. 1. (Color online) Wannier functions for the 1-d chain of
δ-function potentials. Large tick marks denote the δ function,
while small tick marks denote the midpoint. (a) MLWF for J =
J ′ = 4. �1 = �4 = 0.2853a2,�2 = �3 = 0.2983a2. (b) SLWF for
J = 4,J ′ = 2. �1 = 0.0162a2, �2 = 0.0162a2. (c) SLWF+C for
J = 4,J ′ = 2. Both are located at x = 0.5a; �1 = 0.0154a2, �2 =
0.0605a2. (d) SLWF+CS for J = 4,J ′ = 2. Both are symmetric
about 0.5a; �1 = 0.0154a2,�2 = 0.1387a2.

become very delocalized. Using SLWF thus allows us to
construct more localized objective Wannier functions at the
expense of delocalization of the remaining ones.

Figure 1(c) presents the results obtained by fixing the
centers of the two selectively localized orbitals to be at
x = 0.5a. Fixing the centers increases the spread relative to the
case where the centers were not constrained; however it is still
much smaller than the summation of the two most localized
MLWF spreads in the J = J ′ = 4 case. Furthermore, not only
are the centers now located at the chosen sites, but the orbitals
transform as the two possible irreducible representations (even
and odd parity) of the order 2 group, respectively even though
we have not forced the symmetry in any way.
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In this one-dimensional chain, we can also introduce extra
Lagrange multipliers to make the orbitals transform like par-
ticular irreducible representations, as outlined in Appendix A.
For example, we force both objective Wannier functions to
transform as the identity about 0.5a in the case J = 4,J ′ = 2
[see Fig. 1(d)]. The total spread has further increased relative
to the previous case, with the spread of the second orbital
nearly doubling, though now both orbitals are centered at
x = 0.5a and both transform as the identity representation
of the order 2 group. Nonetheless, the largest spread of
the OWF is still substantially less than the most compact
MLWF. It should be noted that one must have a sufficient
number of bands in the energy window to ensure that an
arbitrary constraint can be fulfilled, and this issue is empirically
addressed further in Appendix B. Further insightful examples
in the one-dimensional chain are considered in Appendix B.

IV. APPLICATIONS

Having demonstrated the viability of our method in simple
scenarios, we now turn to realistic applications involving
relevant materials. Here we study GaAs, SrMnO3, and Co,
as they embody three different prototypical systems. In GaAs,
we will show that our method produces atomic-like orbitals
of appropriate local symmetry. SrMnO3 is a prototypical
transition-metal oxide with correlated electron properties,
while in elemental Co the transition-metal d orbitals are not
well separated from the less correlated s and p orbitals.

We use the Vienna ab initio Software Package (VASP)
[7–10] to perform DFT calculations with projector augmented
wave (PAW) potentials [11,12]. The exchange-correlation
functional is treated within the generalized gradient approx-
imation (GGA), as parametrized by Perdew, Burke, and
Ernzerfhof (PBE) [13]. In all calculations, we use experimental
lattice constants, which are 5.653, 3.805, and 3.54 Å for GaAs,
SrMnO3, and Co, respectively. The mesh of k points is taken
as 8 × 8 × 8 with the � point included. Spin polarization is
not included in the calculations. All the isosurface figures are
plotted using the XCrySDen program [14].

While false local minima can in principle occur in our
minimization procedure, they do not seem to occur in the
applications presented in this section, as long as we start from
reasonable trial projection functions.

A. GaAs

As shown in Ref. [2] for the zinc-blende GaAs, MLWF
yields four identically localized Wannier functions (under Td ),
exhibiting the character of sp3 hybrids. Here, as a model to
test our method, we construct the same number of Wannier
functions but with only one objective Wannier function, and
compare the results in 3 cases: (a) constructing four Wannier
functions using MLWF with J = 4,J ′ = 4; (b) constructing
four Wannier functions but using SLWF with J = 4,J ′ = 1;
(c) constructing four Wannier functions using SLWF+C,
fixing the center of the objective Wannier function to be
at the position of As, with J = 4,J ′ = 1. In each case, the
minimization is initialized with 4 trial s orbitals, centered in
the middle of the bonds as the projection functions.

TABLE I. Minimized spreads in GaAs (units are Å2) from
different methods. An asterisk ∗ indicates the objective Wannier
function constructed in the SLWF and SLWF+C method.

MLWF SLWF SLWF+C

1∗ 2.1977 1.4283 1.4764
2 2.1977 3.0330 4.1243
3 2.1977 3.0330 4.1243
4 2.1977 3.0330 4.1243

Table I reports the spreads of all four Wannier functions
in each method. As anticipated, SLWF makes the objective
Wannier function (1*) most localized at the expense of
the remaining Wannier functions. SLWF thus localizes the
objective Wannier function at the cost of an increased total
spread summed over all four Wannier functions. SLWF also
pushes the Wannier center closer to the As ion. Following
Ref. [2] we consider β, the ratio of the distance between the
Wannier center and the Ga ion, and the length of the Ga-As
bond. Using MLWF, we obtain β = 0.618, whereas using
SLWF, we obtain β = 0.706. Of course, when we force the
center to be located at the As site (SLWF+C), we have β = 1.

(a) MLWF (b) SLWF (c) SLWF+C

-1

 0

 1

 2

 3

 4

 5

W
F
 (

V
-1

/2
)

Ga-As bond

Ga As

MLWF
SLWF

SLWF+C

(d) Wannier function along the Ga-As bond.

FIG. 2. (Color online) Wannier functions for GaAs obtained
from different methods. In panels (a)–(c), Ga ions are indicated
by purple spheres on the lattice corners; As ions are blocked
from view by the Wannier function isosurfaces. The absolute value
of the isosurfaces is 0.5/

√
V , where V is the unit cell volume.

Isosurfaces with positive amplitudes are colored red; those with
negative amplitudes are colored blue. The Wannier functions are all
real valued. Panel (d) shows a slice of each Wannier function along
the Ga-As bond. The OWF function is plotted for the SLWF and
SLWF+C methods.

165125-5



WANG, LAZAR, PARK, MILLIS, AND MARIANETTI PHYSICAL REVIEW B 90, 165125 (2014)

TABLE II. Minimized spreads in SrMnO3 and Co (units are Å2)
obtained via MLWF and SLWF.

SrMnO3 Co

MLWF SLWF MLWF SLWF

3z2 − r2 0.5056 0.5006 0.5144 0.5051
xz 0.5486 0.5467 0.8505 0.5615
yz 0.5486 0.5467 0.8505 0.5615
x2 − y2 0.5056 0.5006 0.5144 0.5051
xy 0.5486 0.5467 0.8505 0.5615

In this case, fixing the center only causes a mild increase in
the spread of the objective Wannier function.

In Fig. 2, we present plots showing the objective Wannier
function obtained via the different methods. Interestingly,
when we fix the center to locate at the position of As, the shape
of the objective Wannier function naturally changes such that
it transforms like the identity under Td . Figure 2(d) further
illustrates that SLWF smooths out the large bumps that arise
in solutions obtained using MLWF.

In summary, we have demonstrated that SLWF has func-
tionality that cannot be achieved using MLWF. However, these
functionalities are not clearly relevant to the physics of GaAs;
the results are thus a proof of principle.

B. SrMnO3

We next turn to consider the Wannier functions corre-
sponding to the d orbitals of Mn and p orbitals of O in
the cubic perovskite SrMnO3. In this material, there is an
isolated manifold of 14 bands, which encompasses the Fermi
energy. This manifold is predominantly composed of Mn d

and oxygen p character (see Fig. 7). MLWF will localize all

14 Wannier functions weighted equally. However, the physics
of this compound is driven by correlations on the d orbitals,
so we seek a method which adequately localizes only these
orbitals. We therefore apply our SLWF to localize 5 objective
Wannier functions out of the total 14. We initialize using 5
trial d orbitals centered on Mn and 9 trial p orbitals centered
on O as the projection functions.

In Table II, we compare the spreads of the 5 d-like MLWFs
and the OWFs. Though the differences are very minimal,
SLWF constructs d-like Wannier functions that are slightly
more localized. In Fig. 3, we plot an isosurface of 0.1/

√
V

for both cases, in which the Wannier functions transform like
eg and t2g orbitals centered at the Mn site. Compared with the
MLWFs, the OWFs show noticeably smaller tails. However,
since the value of the isosurface in the plot is quite small,
the differences are in fact very minimal. This feature is also
apparent in the plot along the z axis for the 3z2 − r2-like
MLWF and OWF shown in Fig. 4.

In summary, in the high-symmetry, separated-band case of
SrMnO3, our SLWF procedure has very minimal differences
as compared to MLWF in terms of the spread for this test case.
Further analysis will be performed in the next section where
we analyze the Hamiltonian.

C. Co

The final example considered is Co, a transition metal in
which the electronic structure is less ionic than a transition-
metal oxide. Additionally, and unlike the cases considered
in the previous two subsections, there is no clear separation
between the highest retained bands and subsequent bands in
the electronic structure. Specifically, we consider Co in the
face-centered-cubic (fcc) structure, and we construct a set of
6 Wannier orbitals by including the lowest 6 bands, which
encompasses the narrow d bands and free-electron-like s band

FIG. 3. (Color online) Comparison between the MLWF and SLWF method for SrMnO3. Sr is the light blue sphere in the center, Mn is the
blue sphere on the corner, O is the red sphere. In both panels, the 5 d-like Wannier functions are on the order of 3z2 − r2, xz, yz, x2 − y2, xy,
from left to right. The absolute value of the isosurfaces is 0.1/

√
V .
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FIG. 4. (Color online) Wannier function along the z axis for the
3z2 − r2-like Wannier function generated from MLWF and SLWF in
SrMnO3.

which hybridizes with the d bands. In our SLWF construction
we choose 5 objective Wannier functions (i.e., J = 6 and J ′ =
5). We initialize both cases by using atom-centered trial d

orbitals together with a trial s orbital which is centered around
one of the tetrahedral-interstitial sites.

The right-hand column of Table II summarizes the spreads
of the 5 d-like Wannier functions obtained using the two
localization methods. As shown, SLWF decreases the spread
relative to MLWF in all 5 orbitals, with strong decreases in the
t2g manifold. It is also worth noting that the OWFs we obtain
using SLWF in Co are nearly as localized as in SrMnO3. In
Fig. 5, we compare the isosurface plots of the d-like MLWFs
and the OWFs. In the MLWF case we still use the same orbital
labels for the three t2g-like orbitals for simplicity although

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1

W
F
 (

V
-1

/2
)

Center axis of each lobe

Co

FIG. 6. (Color online) Wannier function along the center axis of
each lobe for the xz-like Wannier function generated from MLWF
and SLWF in Co. The light (green) lines represent MLWF while the
dark (red) lines represent SLWF. For a given method, the solid lines
are along the lobes with positive phase while the dashed lines are
along the ones with negative phase. The horizontal axis is in units of
the lattice constant.

the t2g-like MLWFs have apparently lost t2g symmetry and
there are indications that the s orbital has been mixed in. In
Fig. 6, we plot one of the t2g-like MLWFs and OWFs along
the center axis of each lobe, in units of the lattice constant.
It is obvious that the 4 lobes in MLWF do not have the same
shape any more while the OWF preserves the t2g symmetry.
Therefore, we conclude that SLWF offers improvements for
creating atomic-like d orbitals for use in beyond-DFT methods
in transition metals.

FIG. 5. (Color online) Comparison between the MLWF and SLWF method for Co. Co atoms are indicated by blue spheres on the lattice
corners. In both panels, the 5 d-like Wannier functions are in the order of 3z2 − r2, xz, yz, x2 − y2, xy, from left to right. The absolute value
of the isosurfaces is 0.2/

√
V .
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V. HAMILTONIAN IN MLWF AND SLWF BASES

Thus far we have only examined the spatial properties
of the Wannier orbitals, but another important aspect of the
Wannier orbitals is the nature of the Hamiltonian in this basis.
In order to elucidate this and to understand the differences in
the Hamiltonians for MLWF and SLWF, we will follow the
analysis put forward by Toropova et al. [15] in constructing
Hamiltonians for SrMnO3 and Co. In general we will have a
k-space Hamiltonian with an objective orbital block and some
other block of states that hybridizes with the objective block.
In our test cases the objective orbitals correspond to a d block
while the hybridizing orbital would be an s orbital for Co and
p orbitals for SrMnO3:

H (k) =
(

Hd (k) V (k)

V †(k) Hsp(k)

)
, (37)

where the subscript sp simply denotes the block of orbitals that
are not d. The effect of hopping within the d manifold versus
hybridization can easily be seen in the “sliced” band structure.
This simply amounts to zeroing V (k) and then diagonalizing

-8

-6

-4

-2

 0

 2

 4

 G  X  M  R  G 

E
ne

rg
y 

(e
V

)

(a) MLWF.

-8

-6

-4

-2

 0

 2

 4

 G  X  M  R  G 

E
ne

rg
y 

(e
V

)

(b) SLWF.

FIG. 7. (Color online) Sliced band structures of SrMnO3. In both
panels, dashed gray lines represent the DFT band structure; solid dark
(red) lines represent bands for the block Hd ; solid light (green) lines
represent bands for the block Hp .
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FIG. 8. (Color online) Sliced band structures of Co. In both
panels, dashed gray lines represent the DFT band structure; solid
dark (red) lines represent bands for the block Hd ; solid light (green)
lines represent bands for the block Hs .

the separate blocks of the Hamiltonian at each k point, yielding
a set of bands for each block. This allows one to see the
bandwidth generated solely from hopping within the respective
manifold, and the difference with the DFT band structure
indicates the role of hybridization. We consider the case of
SrMnO3 and Co, following the exact same Wannier procedure
as was outlined above.

In the case of SrMnO3, we see that the d bands have
several differences (see Fig. 7). The t2g bands are narrower
for SLWF, while the eg bands are narrower for MLWF. The
latter observation is particularly counterintuitive given that one
clearly observes an enhanced localization of the objective eg

orbitals in Fig. 3. However, these differences are most likely
not relevant for actual calculations.

In the case of Co, the differences between SLWF and
MLWF are larger (see Fig. 8). In the case of MLWF, one
can see that at the W point the s band is roughly 3 eV
away from the DFT band, indicating a strong hybridization
between the s-like and d-like MLWFs must be present. This is
a symptom of the character mixture that we visually observed
in Fig. 5 and quantified via the substantially larger spread of the
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t2g-like orbitals. In contrast, the s band obtained in the SLWF
procedure nicely tracks the DFT band in the region of the W

point. The complementary aspect of this result is that the sliced
SLWF d bands more closely track the relevant DFT bands. The
same points can be made near the K point. It appears clear in
this case that the SLWF procedure results in a more appropriate
set of d orbitals from the perspective of the Hamiltonian.

VI. CONCLUSIONS

We have generalized the algorithm introduced by Marzari
and Vanderbilt [2] to allow for the maximal localization of a
subset of Wannier functions, with fixed centers and symmetry.
This scheme allows us to achieve greater localization for the
selected subset of Wannier functions. We found that simply
fixing the Wannier center produced orbitals that transformed
as appropriate irreducible representations of the local point
group even without specifying the symmetry.

We illustrated our method on GaAs, SrMnO3, and Co. From
the study of GaAs we demonstrate the power of our approach
by constructing a single Wannier orbital which transforms
like the identity, in addition to three delocalized orbitals which
span the 4-band s-p manifold. In the case of SrMnO3, we found
that our SLWF procedure yielded results very similar to those
found in the MLWF procedure, suggesting that MLWF may
be sufficient for beyond-DFT calculations in transition-metal
oxides. In the case of Co, SLWF offers notable improvements
and results in a much purer set of d orbitals, which could be
very important in the context of DFT+DMFT calculations.
Future work should be performed explicitly comparing these
two approaches in the context of DFT+DMFT. Implementing
our approach within existing MLWF codes is straightforward.
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APPENDIX A: FIXING SYMMETRIES IN ONE
DIMENSION

In this Appendix we show how we enforce symmetry
constraints in one-dimensional systems. Assuming that the
center of symmetry is at x0, the functional we want to minimize
is

�s = �c + λs

Js∑
n=1

∫ ∞

−∞

∣∣(1 − σx0

)
wn(x)

∣∣2
dx

+ λs

J ′∑
n=Js+1

∫ ∞

−∞

∣∣(1 + σx0

)
wn(x)

∣∣2
dx, (A1)

where Js is the number of the objective Wannier functions
we would like to be symmetric, while the other J ′ − Js

would be antisymmetric; λs is a Lagrange multiplier for the
corresponding constraint; σx0 is the mirror operator.

We define

I k
mn = 1

N

∑
k′

[∫ ∞

−∞
ψnk(x)σx0ψ

∗
mk′(x)dx

+
∫ ∞

−∞
ψ∗

mk′(x)σx0ψnk(x)dx

]
. (A2)

Under the infinitesimal unitary transformation, we have

d

[∫ ∞

−∞

∣∣(1 ± σx0

)
wn(x)

∣∣2
dx

]

= ± 2

N

∑
k

J∑
m=1

Re
(
I k
nmdWk

mn

)
. (A3)

Thus,

d�s = d�c − λs

2

N

∑
k

⎡
⎣ Js∑

n=1

J∑
m=1

Re
(
I k
nmdWk

mn

) −
J ′∑

n=Js+1

J∑
m=1

Re
(
I k
nmdWk

mn

)⎤⎦ . (A4)

The gradient of �s is then

Gk
s,mn = d�s

dWk
nm

= Gk
c,mn +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λs

(
I k
mn − I k∗

nm

)
, m � Js,n � Js,

−λs

(
I k
mn + I k∗

nm

)
, m � Js,Js < n � J ′,

−λsI
k
mn, m � Js,n > J ′,

λs

(
I k
mn + I k∗

nm

)
, Js < m � J ′,n � Js,

λs

(
I k
mn − I k∗

nm

)
, Js < m � J ′,Js < n � J ′,

λsI
k
mn, Js < m � J ′,n > J ′,

λsI
k∗
nm, m > J ′,n � Js,

−λsI
k∗
nm, m > J ′,Js < n � J ′,

0, m > J ′,n > J ′.

(A5)
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Using this method, we can ensure that the objective Wannier
functions preserve arbitrary symmetries in a one-dimensional
system in addition to maintaining fixed centers, all while
maintaining a high degree of localization by performing
selective localization.

APPENDIX B: ONE DIMENSIONAL CHAIN WITH
ATTRACTIVE DELTA POTENTIAL

This Appendix presents results obtained for a one dimen-
sional chain of δ function potentials with negative values, i.e.,
the system considered in Sec. III but with a change of sign in the
potential. In this system a straightforward tight-binding picture
would be based on orbitals similar to the isolated delta-function
bound states. We show that the SLWF procedure can be used to
recover this picture, creating OWF that transforms according
to the irreducible representations of the Hamiltonian. We also
demonstrate that the SLWF procedure can be used to generate
states with symmetries not actually present in the Hamiltonian,
provided that enough states are retained.

In our analysis, we will consider two bands under a
variety of different scenarios. We begin by comparing MLWF
(J = 2,J ′ = 2) with SLWF for the case of J = 2,J ′ = 1,
and in Fig. 9(a) we plot the most localized MLWF and the
objective Wannier function. In this case, both procedures
naturally center the Wannier functions at the potential and
both orbitals transform like the identity. As expected, the OWF
has a smaller spread than the MLWF. In the second case, we
perform SLWF+C for J = 2,J ′ = 1 [see Fig. 9(b)]. First we
center the OWF at the midpoint of the bond, successfully
obtaining a symmetric function, though with a larger spread
than the OWF which naturally centered itself on the potential.
Subsequently, we chose to center the OWF about a point 1/3
of the way between the potentials, and this results in a similar
spread and the Wannier function is no longer symmetric about
its center [see Fig. 9(b)]. If we perform SLWF+CS and attempt
to enforce the OWF to be symmetric about its center, which
is a symmetry that does not exist in the Hamiltonian, we were
not successful (not shown). However, if we perform the same
test using J = 7,J ′ = 1 [see Fig. 9(c)], there is much more
freedom as we are only minimizing 1 out of 7 bands and a
nearly symmetric function can be obtained. Finally, we repeat
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FIG. 9. (Color online) Wannier functions for the 1-d chain of
negative δ-function potentials. Large tick marks denote the δ function,
while small tick marks denote the midpoint. Panels (a) and (b)
use 100 k points while panel (c) uses 20 k points. (a) Wannier
functions obtained for J = 2,J ′ = 2 (MLWF), and J = 2,J ′ = 1
(SLWF). The spreads are 0.2713a2 and 0.0506a2, respectively.
(b) OWF with centers fixed at 0.5a and 0.3a (SLWF+C), in the case of
J = 2,J ′ = 1. The spreads are 0.0596a2 and 0.0637a2, respectively.
(c) OWF with centers and symmetries controlled (SLWF+SC) in the
case of J = 7,J ′ = 1. The spreads are 0.0050a2 and 0.0205a2 for
symmetric OWF and antisymmetric OWF, respectively.

the preceding case but demand an antisymmetric function,
demonstrating that this is straightforward.
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