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The combination of density functional theory and single-site dynamical mean-field theory, using both Hartree
and full continuous-time quantum Monte Carlo impurity solvers, is used to study the metal-insulator phase
diagram of perovskite transition-metal oxides of the form ABO3 with a rare-earth ion A = Sr, La, Y and
transition metal B = Ti, V, Cr. The correlated subspace is constructed from atomiclike d orbitals defined using
maximally localized Wannier functions derived from the full p-d manifold; for comparison, results obtained using
a projector method are also given. Paramagnetic DFT + DMFT computations using full charge self-consistency
along with the standard “fully localized limit” (FLL) double counting are shown to incorrectly predict that LaTiO3,
YTiO3, LaVO3, and SrMnO3 are metals. A more general examination of the dependence of physical properties on
the mean p-d energy splitting, the occupancy of the correlated d states, the double-counting correction, and the
lattice structure demonstrates the importance of charge-transfer physics even in the early transition-metal oxides
and elucidates the factors underlying the failure of the standard approximations. If the double counting is chosen
to produce a p-d splitting consistent with experimental spectra, single-site dynamical mean-field theory provides
a reasonable account of the materials properties. The relation of the results to those obtained from “d-only”
models in which the correlation problem is based on the frontier orbital p-d antibonding bands is determined. It
is found that if an effective interaction U is properly chosen the d-only model provides a good account of the
physics of the d1 and d2 materials.
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I. INTRODUCTION

Understanding the ground state and excitations of inter-
acting electrons in solids is one of the grand challenges
of modern condensed matter physics. The entanglement of
coordinates in the fermion wave function imposed by the
combination of Fermi statistics and the electron-electron
interaction renders a solution of the all-electron many-body
problem prohibitively difficult; indeed, theoretical arguments
suggest that the general case of the many-electron problem is
nondeterministic polynomial (NP) hard, meaning that it cannot
be solved in polynomial time [1]. While density functional
theory (DFT) calculations [2] provide a useful and reasonably
accurate treatment of many properties of many materials, in
important cases such as transition-metal oxides with partially
filled d shells DFT calculations often fail [3] to provide even
a qualitatively reasonable picture of the electronic properties
of interest. “Beyond-DFT” electronic structure methods are
needed.

In recent years, the combination of density functional
theory (DFT) and dynamical mean-field theory (DMFT) [4–6]
has emerged as a widely used beyond-DFT method. The
approach has provided important qualitative insights into the
physics of important classes of materials including lanthanides
and actinides [7–9], transition metals [10], transition-metal
oxides [11–14], and many other compounds. One can formally
view this approach as a dual-variable effective action theory
where one constructs a functional of both the density and
a local Green’s function representing degrees of freedom in
a local subspace where correlations are most important [8].
Two key issues remain imperfectly understood in this formally
exact theory. The first issue is how to choose a local correlated

subspace such that the best possible approximation can be
developed when actually implementing the theory. This choice
should be informed by the approximations used in implement-
ing the theory. One commonly employed choice is to construct
the correlated subspace from frontier (near Fermi-surface)
orbitals such as the p-d antibonding bands of transition-
metal oxides; examples may be found in Refs. [11,12].
An alternative, and also widely used, choice is to define a
correlated subspace in terms of atomiclike orbitals such as
transition-metal d orbitals defined by applying a projector or
Wannier construction to Kohn-Sham eigenfunctions in a wide
energy range (see e.g. Refs. [14–16]). We directly compare
these two approaches in this study.

The second issue concerns the structure of the local
potential that acts on the correlated substance. While the theory
is formally defined once the correlated subspace is chosen,
in practical calculations, one must make approximations to
the position dependent potential and the local time dependent
potential (i.e., the self-energy) acting on the correlated sub-
space. These choices are the analogues of the choice of density
functional in standard DFT. The local self-energy is obtained
using the single-site dynamical mean-field approximation [17].
Given the successes of the local density approximation (LDA)
and the generalized gradient approximation (GGA) [2,18], it is
natural to continue to use these approximations for the effective
single-particle potential. The resulting formalism is termed the
DFT + DMFT methodology [4–6]. An obvious problem then
arises, because the LDA/GGA exchange-correlation potentials
already account for the local correlations to some degree.
Hence there is a “double-counting” problem, which needs
to be corrected. This “double-counting correction” has been
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the subject of a considerable theoretical literature [19–23] but
remains ill-understood.

In this paper, we study these issues via a detailed examina-
tion of the application of the DFT + DMFT methodology to the
“early” transition-metal oxides. These materials crystallize in
variants of the ABO3 perovskite structure. The B site contains
an atom (Ti, V, Cr) drawn from the left side of the first
transition-metal row of the periodic table and the choice of
A-site ion controls the filling of the d level and aspects of
the crystal structure. The early transition-metal oxides play
a fundamental role in our understanding of the correlated
electron problem, in particular exhibiting correlation-driven
insulating states and the metal-insulator transitions (MIT) [3]
that are not understandable in conventional density functional
terms. Elucidating the physics of these materials is a crucial
step towards a more comprehensive solution of the many-
electron problem, and understanding the factors controlling
the DFT + DMFT description of the materials is a crucial
step in the validation of the method. Our results demonstrate
the importance of charge-transfer physics even in the early
transition-metal oxides and suggest that one issue with the
DFT + DMFT program is that the underlying DFT provides
an incorrect estimate of the charge-transfer energetics, which
then propagates into the many-body theory. We show that if this
issue is corrected, then for electronically three-dimensional
materials the single-site dynamical mean-field approximation
provides a reasonably good approximation to the physics. Put
differently, the uncertainty arising from our lack of knowledge
of the double-counting correction is apparently larger than the
errors arising from the single-site approximation to dynamical
mean-field theory.

The rest of this paper is organized as follows. In Sec. II, we
present a review of the DFT + DMFT method that emphasizes
the important physics issues. In Sec. III, we present the theoret-
ical model and methodology used in this paper. In Sec. IV, we
present a simple but revealing Hartree-approximation solution
to the DMFT impurity problem. This Hartree approximation
provides a computationally efficient method of understanding
the qualitative features of the phase diagram of various early
transition-metal oxides, in addition to allowing a detailed
comparison between correlated subspaces constructed from
Wannier functions and from projectors. Section V presents our
DFT + DMFT results. In Sec. VI, we discuss how to determine
realistic values for the interaction and the double counting.
We consider the relationship of our results to those obtained
by applying correlations to the frontier orbitals in Sec. VII.
Section VIII is a summary and conclusion.

II. DFT + DMFT IN TRANSITION-METAL OXIDES

In this section, we review two of the crucial technical and
conceptual issues that arise in applying the DFT + DMFT
method to transition-metal oxides, namely, the definition of
the correlated subspace and the double-counting correction, in
order to motivate the formalisms investigated in this paper.

A. Definition of the correlated subspace

Applications of the DFT + DMFT method to transition-
metal oxides are based on the idea, accepted since the

FIG. 1. (Color online) The density of states for SrVO3, LaTiO3,
and YTiO3 derived from DFT + MLWF tight-binding Hamilto-
nian. The lattice structure for each material is from experimental
data [24,25]. The vertical thin solid line marks the Fermi level. The
solid curve (red online) is the transition-metal d band, the dashed
curve (black online) is the oxygen p band.

original work of Peierls and Mott [26,27], that the appropriate
correlated subspace consists of the electrons in the partly-filled
transition-metal d shell and that the important interactions to
include in a beyond DFT calculation are the on-site, intra-d
interactions. Different methods of constructing the correlated
subspace have appeared in the literature. In the early stages of
theoretical development, the correlated subspace was defined
phenomenologically [28], typically as a tight-binding model
of electrons hopping among sites of a lattice and coupled by
an on-site repulsion U and (if each site contains more than one
orbital) a Hund’s coupling J .

Improvements in band structure calculations have made
it possible to define the correlated orbitals in a less phe-
nomenological way. One widely adopted approach involves
selecting the near Fermi-surface orbitals by fitting to a
few-orbital tight-binding model using downfolding [29] or
Wannier function [30] techniques. This approach appears
plausible for the early transition-metal oxides, where as seen
in Fig. 1 the near Fermi-surface bands obtained from density
functional calculations have a dominantly d-like character
and are separated from the p bands by an energy gap.
DFT + DMFT studies based on this approximation have led
to important insights; in particular, Pavarini and co-workers
have used this approach to demonstrate the crucial role played
by GdFeO3-type structural distortions in the metal-insulator
transition of LaTiO3 [12,31] and have argued that the structural
distortions are similarly important in LaVO3 [32].

Defining the d orbitals via the near Fermi-surface bands,
however, poses practical and conceptual difficulties. First, it
seems desirable to have a theory that accounts in a unified
way for the properties of all of the transition-metal oxides.
However, as the B-site ion is varied across the 3d transition-
metal row from the “early” ions Ti and V to the “late”
ions Ni and Cu, the admixture of p states into the frontier
bands increases and the energy separation between the p and
the d bands decreases, so an unambiguous identification of
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FIG. 2. (Color online) Energy isosurfaces of V-derived dxy or-
bitals of SrVO3 (droplet shaped shaded regions, cyan and yellow
online) along with positions of V and O ions (large circle, blue online,
and small circle, red online, respectively). (a) Frontier orbital used
in the d-only model defined by applying the maximally localized
Wannier function construction to the near Fermi surface antibonding
bands, (b) atomiclike dxy orbital used in the full DFT + DMFT
procedure, defined by applying the maximally localized Wannier
function method to the full p-d band complex. The two plots are
set at the same scale and the same isosurface value (0.6) and are
generated using VESTA [33] with the input produced by QUANTUM

ESPRESSO [34,35] and WANNIER90 [36].

the frontier (p-d antibonding) bands becomes problematic.
Second, even in the case of early transition-metal oxides, the
real-space orbitals obtained from the near Fermi surface bands
are rather delocalized in space, with orbitals centered on a
transition-metal ion having significant weight on the nearby
oxygen ions and even some weight on the nearest-neighbor
transition-metal ion (see Ref. [29] and Fig. 2, for examples).
Whether the electron-electron interactions relevant to this
somewhat delocalized object can be modeled with the simple
on-site U and J terms used in DFT + DMFT calculations is not
clear. Aichhorn and collaborators [37] observed that projecting
the physical interactions onto these frontier orbitals let to an
interaction matrix with symmetry properties inconsistent with
those found in the usual theory of interactions in a d shell.
A third issue relates to the “charge-transfer insulator” physics
introduced by Zaanen, Sawatzky, and Allen in 1985. These
authors observed [38] that if the energy ECT to transfer a charge
from a ligand p state to a transition-metal d state was less than
the d level charging energy U , then the physics is controlled
by ECT and not U . While the precise ratio of ECT to U that
places the material in the charge-transfer insulator regime is
not known, we shall see that descriptions of the physics of even
the early transition-metal oxides require a U � 4 eV � ECT,
suggesting that charge-transfer physics may be relevant even
in these materials.

A more phenomenological reason why a focus on the
frontier orbitals might be inadequate is seen in Fig. 1. SrVO3

is a moderately correlated metal, LaTiO3 is a small-gap
correlated insulator and YTiO3 is a wider-gap correlated
insulator. From Fig. 1, we see that the gap between oxygen
p bands and transition-metal d bands of SrVO3 is about 1 eV.
On the other hand, in LaTiO3 and YTiO3, the gaps are larger
(�3.5 eV), implying less p-d mixing. While the difference
in p-d splitting appears in the frontier orbital model as a
difference in bandwidths, the large differences in p-d splitting

between compounds may have additional effects, which cannot
be studied in a frontier orbital-only model.

For these reasons, a different definition of the correlated
orbitals, corresponding more closely to the intuitive idea of
an atomiclike d state, may be appropriate. Such orbitals may
be constructed by applying Wannier [30] or projector [9,21]
methods to the set of states spanning the entire p-d band
complex. Provided that the manifold of states is defined over
the full p-d manifold, the correlated orbitals generated by
either the projector or the Wannier procedure are found to
correspond reasonably closely to the intuitive picture of atomic
d orbitals, having only small weight on the nearest-neighbor
oxygen ions [see, e.g., Fig. 2(b)]. The two choices have been
shown to lead to essentially the same results in DFT + DMFT
computations of La2CuO4 [39]. Further, for these orbitals,
the interaction matrix elements computed from constrained
random phase calculations have, to a good approximation, the
symmetry structure expected for the d shell in free space [37].
Finally, the Zaanen-Sawatzky-Allen charge-transfer physics
can be included in the calculation on the same footing as the
Mott-Hubbard physics driven by the local interactions. For
most of this paper we adopt the atomiclike definition of d

orbitals, but in Sec. VII, we compare results obtained using
frontier orbitals.

B. The double-counting correction

Applying additional correlations to a predefined set of
states creates a crucial complication: the extra correlations
contribute to a Hartree shift which will change the energies of
the predefined states relative to other states in the material,
and will therefore change the charge densities and other
aspects of the physics. In the transition-metal oxide context,
the extra correlations in particular change the energy of the
d level relative to that of the oxygen p levels, shifting the
charge-transfer energy ECT substantially and thus significantly
affecting the Zaanen-Sawatzky-Allen metal-insulator transi-
tion physics while also changing the bandwidth and detailed
band structure of the antibonding manifold. Further, a large
change in ECT will lead to a large change in the occupancy
of the d level, potentially leading to issues with charge self-
consistency by shifting the charge distribution away from the
value favored by the long-ranged Coulomb interaction. While
some of the level shift may be physical (correcting errors in
the underlying DFT), much of the Hartree shift associated with
the physical on-site correlations is included in the LDA/GGA
estimates of the relative energies of the p and d states,
and should not be counted twice. Therefore it is generally
agreed [19,20,22,23] that some forms of “double-counting
correction” � should be introduced into the theory to properly
adjust the charge-transfer energy by compensating for some
or all of the Hartree shift of the d levels implied by the added
interactions. Also, a charge self-consistency process should be
implemented to ensure that the long range part of the Coulomb
energy is optimized. But because there is no clear theoretical
procedure for deriving the double-counting correction, the
literature has proceeded on a somewhat phenomenological
basis, with different forms introduced based on symmetry and
other arguments.

125114-3



DANG, AI, MILLIS, AND MARIANETTI PHYSICAL REVIEW B 90, 125114 (2014)

TABLE I. A summary of the DFT codes used (QUANTUM

ESPRESSO code [34,35], VASP [44–47], and WIEN2K [48]), the
methods (maximally localized Wannier function (MLWF) [30,49]
as implemented in Wannier90 [36], or projector [9,21]) employed to
construct the correlated subspace, the impurity solver, whether or not
full charge self-consistency (CSC) is implemented, and whether the
Slater-Kanamori [SK, Eq. (4)] or spherical harmonic (SH, Ref. [41])
forms of the interaction are used. We note that the projectors defined
in VASP and Wien2K/TRIQS have different implementations.

Correlated Impurity
Code Subspace Solver CSC Interactions

QUANTUM MLWF CT-QMC, Hartree No SK
ESPRESSO

VASP Projector Hartree Yes SH
WIEN2K/TRIQS Projector CT-QMC Both SH

Perhaps the most widely used form of the double-counting
correction is the fully localized limit (FLL) form [20]

EFLL = Uavg
Nd (Nd − 1)

2
− Javg

∑
σ

Nσ
d

(
Nσ

d − 1
)

2
, (1)

where Uavg = 1
(2l+1)2

∑
ij Uij and Uavg − Javg =

1
2l(2l+1)

∑
i �=j Jij . For the Slater-Kanamori interaction [40]

[see Eq. (4)], Uavg and Javg are

Uavg = U − 8J

5
, Javg = 7J

5
. (2)

We note that in VASP DFT + U or the WIEN2K/TRIQS codes,
the interaction is written in the form of the spherical harmonic
functions [41] (see Table I), which is not identical to, but can
be well approximated by, the Slater-Kanamori form provided
that the interaction parameters are such that both forms of
interactions yield the same Uavg and Javg. Therefore, when
using the VASP DFT + U and WIEN2K/TRIQS codes, we present
our results in terms of the U and J implied by the Uavg and
Javg via Eq. (2).

The addition of EFLL to the functional yields a term � in the
effective potential which shifts the correlated subspace relative
to the other electronic states:

�σ
FLL = Uavg

(
Nd − 1

2

)
− Javg

(
Nσ

d − 1

2

)

=
(

U − 8J

5

) (
Nd − 1

2

)
− 7J

5

(
Nσ

d − 1

2

)
. (3)

We found [39] that for La2CuO4, the FLL double count-
ing in combination with the fully charge self-consistent
DFT + DMFT procedure yields metallic behavior, while the
material is insulating in experiment. In subsequent work [42],
Park and two of us found that DFT + DMFT calculations in
conjunction with the FLL double counting wrongly predicts
that none of the rare-earth nickelate family RNiO3 have a
charge disproportionated ground state, whereas in experi-
ment [43] all of the materials except LaNiO3 disproportionate.
The essential difficulty was found to be that the FLL double
counting places the d levels too close to the p levels.

One possible resolution of this problem is to alter the
double-counting correction. Park and two of the present
authors [42] proposed a modified FLL formula in which
U is replaced by a smaller value U ′ < U . This form was
motivated by studies of the total energy within DFT + DMFT
and can be used straightforwardly to perform fully charge
self-consistent calculations in existing codes. The effect of
using a U ′ < U is to increase the p-d splitting and thus
slightly decrease the number of electrons in the correlated
shell; for the LaNiO3 system, this approach was found to give
much better agreement with multiple experiments [42]. An
alternative approach is given in Ref. [16], which proposed
that Eq. (3) be replaced by a constant level shift determined by
replacing Nd in that equation with the formal valence N0

d . This
approach has the practical effect of reducing the magnitude
of the double-counting correction relative to the FLL value,
thereby increasing the p-d splitting. The ansatz of Ref. [16],
however, implies that the double-counting contribution to the
Hamiltonian should not be viewed as an interaction energy,
but that Eq. (1) should be replaced by a linear function of Nd .

Other approaches have also been discussed [21–23,41], but
the theoretical issue is not settled. In previous work [39],
we therefore proposed to sidestep entirely the question of
what form of double-counting correction should be used.
We demonstrated that for cuprates and nickelates different
choices of double-counting correction correspond in the end to
different values of the charge-transfer energy or, equivalently,
to different values of the number Nd of electrons in the
correlated shell. To understand the physics of the metal-
insulator transitions, we computed the metal-insulator phase
diagram for theoretical models of La2CuO4 and LaNiO3 as
a function of U and εd − εp and presented the results in the
plane of U and Nd , revealing that for Nd sufficiently close to
the nominal formal valence value N0

d (for example, N0
d = 9

for cuprates) the model is insulating while when Nd exceeds
a critical value, an insulator to metal transition ensues. An
interesting aspect of this representation of the data is that
for large U the phase boundary generically becomes nearly
vertical, indicating that for sufficiently large Nd (i.e., for
sufficiently small charge-transfer energy) an insulating state
cannot be realized even for large values of U .

In this paper, we examine the extent to which these issues
are relevant to a wider range of transition-metal oxides, in
particular, the “early” transition-metal oxides such as the La
and Sr-based titanates, vanadates, and chromates.

III. METHODS

A. Overview

In this paper, we shall mainly be interested in transition-
metal oxides that crystallize in variants of the ABO3 perovskite
structure. We study materials in which the A-site ion is Sr, La
and (in one case) Y and the B site ion is one of Ti, V, Cr, and
Mn. The Sr series of materials are cubic perovskites; the La/Y
series crystallize in GdFeO3-distorted variants of the cubic
perovskite structure characterized by a four-sublattice pattern
of tilts and rotations.

In this study, we have used different DFT codes, methods
of constructing the correlated subspace, impurity solvers, and
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forms of the interaction in order to obtain an understanding of
the effect of these details on the physics. A summary showing
which methodological options were used with each code is
given in Table I.

We will demonstrate that for the V and Ti-based com-
pounds, it is not necessary to treat the entire d manifold. Trun-
cation to the t2g subspace provides an accurate representation
of the physics: the eg levels (which are nearly empty) may be
omitted entirely. However, for LaCrO3 and SrMnO3, where
the standard valence counting indicates that the t2g shell is
half filled, we find that inclusion of the eg levels is important,
essentially because the insulating gap is determined by the
energy difference between the t2g and eg levels.

The interactions in the correlated subspace are normally
taken as the standard Slater-Kanamori form [40]

Hon-site = U
∑

α

nα↑nα↓ + (U − 2J )
∑
α �=β

nα↑nβ↓

+ (U − 3J )
∑

α>β,σ

nασnβσ

+ J
∑
α �=β

(c†α↑c
†
β↓cα↓cβ↑ + c

†
α↑c

†
α↓cβ↓cβ↑), (4)

where α,β label orbitals in the transition-metal d manifold on
a given site. We fix J , which is only very weakly screened by
solid state effects, to be J = 0.65 eV unless stated otherwise
but consider a range of U .

B. Solution of correlation problem

We obtain the local self-energy using the single-site
dynamical mean-field approximation [17], which requires
the solution of an auxiliary quantum impurity model. We
obtain numerically accurate solutions using quantum Monte
Carlo methods [50,51] and also simple and qualitatively
useful approximations using the Hartree method, in which
the quartic terms of the Hamiltonian are approximated by
density mean fields 〈ni〉 determined self-consistently such
that ninj ≈ ni〈nj 〉 + 〈ni〉nj − 〈ni〉〈nj 〉. It should be noted
that the DFT + DMFT formalism reduces to DFT + U when
solving the DMFT impurity problem within the Hartree
approximation. We also note that while the spin polarization is
allowed in DFT + U or DFT + Hartree, all calculations with
DFT + DMFT in this work are restricted to the paramagnetic
state.

In order to perform the extensive calculations needed for
our phase diagram surveys, we typically neglect the exchange
and pair-hopping terms of Eq. (4) (Ising approximation) in our
QMC calculations, to be able to use the “segment” algorithm
(see Ref. [51] for a definition), which is 4 to 5 times faster.
To test the quality of the interaction, we present in Fig. 3 a
comparison of the self-energy obtained using the rotationally
invariant and Ising interactions for d1, d2, and d3 systems
with U = 5 eV and Nd chosen so that the materials are near
the metal-insulator phase boundary. The imaginary part of
the self-energy, which is a reasonable representation of the
correlation strength, is similar in the two cases, except at the
lowest frequency. The differences in self-energy are found to
be sufficiently small so that the metal-insulator phase diagram
is well approximated by the Ising interaction calculations.

FIG. 3. (Color online) Imaginary part of the Matsubara self-
energies obtained with U = 5 eV and J = 0.65 eV using Ising inter-
action (pair hopping and exchange terms excluded) and rotationally
invariant interaction and plotted against Matsubara frequency. The
p-d energy splitting is the same for the Ising and rotationally invariant
calculations but is adjusted for each material so that the compound is
near the metal-insulator phase boundary (see Fig. 9).

To specify whether the system is metallic or insulating,
we use maximum entropy techniques to continue the self-
energy, then use the continued self-energy to compute the
lattice Green’s function. We define solutions as insulating if
the imaginary part of the local Green’s function vanishes at
the chemical potential. To locate the metal-insulator transition
phase boundary, we determine the gap magnitude from a linear
extrapolation of the density of states and define the metal-
insulator transition as the point at which the gap is closed.

C. The double-counting correction, full charge self-consistency,
and the d level occupancy

The double-counting correction in effect defines a shift �

of the correlated subspace that acts to compensate for some
or all of the Hartree shift due to the interactions within the
subspace. Different forms of the double-counting correction
have been given in the literature [16,19–23] but the correct
form is not known. Determining the correct form of the double-
counting correction (or, alternatively, the correct mean p-d
energy splitting) is a crucial open issue in the DFT + DMFT
methodology.

In the fully charge self-consistent DFT + U and
DFT + DMFT calculations, we use the fully localized-limit
(FLL) double-counting formula [20] [see Eq. (3)] unless other-
wise stated. In our other calculations (which do not include the
charge self-consistency step), we follow Ref. [39] and consider
a range of double-counting corrections, which we parametrize
by Nd , the expectation value of the operator giving the d level
occupancy. The parametrization is possible because if the cor-
relation problem is defined in terms of the p-d manifold, Nd is a
monotonic function of the d level energy. The parametrization
is useful because (as was demonstrated for late transition-metal
oxides in Ref. [39] and will be seen in detail below) many of the
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specifics of the materials properties affect the metal-insulator
line only via their effect on the value of Nd , so the resulting
phase diagrams are relatively simple when expressed in terms
of Nd . Of course, the precise values found for Nd depend on
the precise definition of the d orbital which in turn depends on
the scheme (Wannier versus projector) and the energy window
chosen. However, the trends are robust and different situations
can be meaningfully compared if consistent definitions of d

orbital are adopted. Further details are given in Ref. [39].
A related important issue concerns the effect of full charge

self-consistency in the DFT + DMFT formalism. In Ref. [52],
we showed that the only important effect of the full charge
self-consistency is a change in the Nd values: a one-shot
calculation tuned to have the same Nd produces spectra
that are indistinguishable from those obtained in the fully
charge self-consistent formalism. We present here additional
calculations further confirming this observation. Therefore, in
most of this paper, we simply present noncharge self-consistent
results as a function of Nd .

D. GdFeO3 distortion

In reality, only a few perovskites (most notably SrVO3 and
SrMnO3) form in the cubic structure. In most transition-metal
oxides of chemical form ABO3, the small radius of the rare-
earth A causes a significant distortion (the GdFeO3 rotation)
of the perovskite structure. Pavarini and collaborators [12]
argued on the basis of studies of a frontier orbital (d-only)
model that the distortion was important for the metal-insulator
transition. The importance of the crystal structure was also
noted by Craco et al. [53]. We further investigate this issue
using our approach.

The materials we study form in the Pnma or in Glazer’s
notation [54] a−b+c− structure. These structures may be
obtained from the ideal perovskite structures by rotating the
transition-metal-oxygen octahedra by certain tilt angles. The
tilt angles are zero for SrVO3 and increase as one moves
to LaTiO3, LaVO3, and finally to YTiO3. The experimental
structural parameters [24,25,55] are used in all calculations.

While the hybridization function is diagonal in orbital
indices for the cubic structures, it will have off-diagonal
terms in the GdFeO3 structures. Because off-diagonal terms
in the hybridization function lead to a severe sign problem
in the CT-QMC calculations, it is advantageous to define
a basis in which the off-diagonal terms are minimized. We
therefore employ on each site a new (rotated) basis of t2g

orbitals chosen to minimize off-diagonal terms [56]. In our
procedure, at each DMFT iteration, the lattice Green’s function
is rotated to the new basis in order to obtain a diagonal
hybridization function which serves as the input of the impurity
solver. The output diagonal impurity self-energy is then
transformed back to the original basis in preparation for the
next DMFT iteration. The results from the DMFT calculation
are postprocessed in the same ways as for the cubic structure
to construct the MIT phase diagrams.

IV. DFT + HARTREE CALCULATIONS

In this section. we solve the DMFT impurity problem within
the Hartree approximation as described in Sec. III B (based on

QUANTUM ESPRESSO/MLWF) and compare the results to those
obtained with the widely used DFT + U approximation as
implemented in VASP [44–47]. The VASP DFT + U calculations
are based on a definition of the d orbitals from a projection
onto d-symmetry states defined within a sphere centered on the
transition-metal sites and include a full charge self-consistency
calculation with the FLL double counting [Eq. (3)]. The
spin-independent PBE [57] exchange-correlation functional
is employed. Hereafter, we will refer to these two approaches
as DFT + Hartree and DFT + U , but it should be understood
that the only difference is that the former uses a correlated
subspace defined via Wannier functions and does not perform
full charge self-consistency while the latter has a correlated
subspace defined via a projector and does include full charge
self-consistency.

The DFT + Hartree and DFT + U calculations are static
mean-field approximations, and as such overemphasize the
tendency to long-ranged order and provide poor approxima-
tions to spectra. However, the methods are computationally in-
expensive and provide important insights. In our calculations,
we do not allow the possibility of breaking of translational
symmetry; therefore insulating behavior requires ferromag-
netic and ferro-orbital order. Allowing for antiferromagnetic
and/or antiferro-orbital states, which break translational sym-
metry, would change the locations of the phase boundaries, but
would not affect the qualitative conclusions we wish to draw
here, concerning the relation of Wannier and projector results,
the effect of charge self-consistency, and the relevance of the
eg manifold of states.

Figure 4 compares the VASP DFT + U fully charge self-
consistent calculations (with FLL double counting) to those
obtained from DFT + Hartree approximation calculations in
which the d-level energy is adjusted to produce spectra
in agreement with the VASP DFT + U results (in particular
relative energies of the majority p and majority d derived
bands). Even after this adjustment, small differences remain
between the two calculational methods. We discuss these in
detail below but emphasize that the small differences do not
change any of the qualitative physics.

The fully charge self-consistent DFT + U calculations in
Fig. 4 show that, as the interaction strength is increased,
the electronic structure rearranges itself so as to keep the d

occupancy and the p-d band splitting (defined, for example,
as the energy separation from the top of the lower, oxygen-
dominated bands to the bottom of the majority-spin upper
band) relatively unchanged. We see that as U is increased,
the energy of the “upper Hubbard band” (minority-spin
unoccupied states) increases. This increase implies a decrease
in virtual charge fluctuations into the minority-spin d states.
However, the decrease in Nd implied by this decrease in
virtual charge fluctuations is to a large extend compensated
by a small upward shift of the O states (compare, e.g., the
position of the O states relative to the Fermi level in panels
a1-a4 of Fig. 4), which acts to increase the occupancy of
the majority-spin orbitals, with the result that Nd is hardly
changed. This evolution of electronic structure with U reveals
an essential role of p-d covalency and charge self-consistency
in compensating for the effects of the Hubbard U . This
physics is not contained in the frontier orbital Hubbard
model.
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FIG. 4. (Color online) The density of states for SrVO3 (SVO) and LaTiO3 (LTO) obtained from DFT + U (VASP implementation) with FLL
double counting [(a) for SVO and (c) for LTO] and DFT + Hartree (QUANTUM ESPRESSO/MLWF) [(b) for SVO and (d) for LTO] for U = 0,3,5,
and 7 eV. The DFT calculations employ the experimental structures. The Hund’s coupling is J = 0.65 eV. The light (red online) curves are
the transition-metal d bands, the black curves are the oxygen p bands. The Nd values shown in the DFT + U columns are calculated from the
VASP projector, while the ones in the DFT + Hartree columns are from MLWF. The dashed lines mark the Fermi level, which is set at the lower
edge of the majority spin upper band. In the DFT + Hartree calculations, the double-counting correction is manually set so that the decrease in
Nd is the same as in DFT + U calculations as U increases.

There are some differences of details between DFT + U and
DFT + Hartree calculations. First, the projected DOS resulting
from the DFT + U calculation is slightly smaller than that
of the DFT + Hartree calculation, because some portion of
the charge resides in interstitial regions and is not captured
by the projector method used in the VASP implementation of
DFT + U . Second, as can easily be seen by comparing the d

DOS in the p-dominated lower energy part of the spectrum
shown in Fig. 4 (the same effect is present but more difficult to
discern in the d-dominated part of the DOS), the d occupancy
resulting from the VASP DFT + U calculation is larger than that
resulting from the MLWF-based DFT + Hartree procedure.
For SrVO3, the total Nd per transition-metal atom (summed
over all 5d orbitals) obtained in the VASP DFT + U projector
scheme is about 0.65 greater than that obtained in the
DFT + Hartree Wannier scheme; for LaTiO3, the difference is
about 0.53. Roughly half of this difference arises from the fact
that the projector has nonzero weight below −8 eV. The
more relevant contribution to the difference arises because
the projector method produces a slightly larger p-d covalency
than the Wannier method. A consequence is that because
the dimensionless parameter giving the effective correlation
strength of the quantum impurity model is more or less the
ratio of the interaction U to a measure of the covalence, the
projector-based DFT + U results are in effect less correlated
than the DFT + Hartree results, explaining the difference in
gap sizes and spin polarizations between the two methods.
Third, in DFT + U calculations for LaTiO3 [Fig. 4(c)], the Ti
d bands mix with La f bands, resulting in small portions of Ti
d DOS at the positions of La f bands slightly above the Fermi
level [see, for example, the DOS in the energy range between
1.5 and 2 eV in panel 1 of Fig. 4(c)]. This mixing is not captured
in MLWF method used in DFT + Hartree [compare with panel

1 of Fig. 4(d)]. These differences do not affect the qualitative
trends and make only small changes to quantitative values but
are important to bear in mind when comparing projector and
Wannier-based results.

Figure 5 shows the metal-insulator phase diagram com-
puted in the DFT + Hartree approximation for the Sr and La se-
ries of materials. First, we consider the simple cubic perovskite
lattice structure; this is physical for the Sr series but not for the
La series. As we do not allow translational-symmetry breaking,
obtaining insulating states with DFT + Hartree calculation
requires ferromagnetic (translationally invariant breaking of
spin symmetry) and ferro-orbital (translationally invariant
breaking of rotation symmetry about a transition-metal site)
order. Orbital order corresponds to splitting the energies of the
t2g levels, which are degenerate in the nonorbitally ordered
state. We find two kinds of splitting pattern: “1 down, 2
up,” in which one orbital has lower energy than the other
two and correspondingly higher occupancy, and “2 down,
1 up” in which two orbitals have approximately the same
energy, which is lower than that of the third, so that they
have higher occupancy. We find that the orbital order depends
on the formal valence: d1 has “1 down, 2 up,” d2 has “2
down, 1 up,” and d3 has no orbital order. We see that for
both the Sr and hypothetical cubic La series of materials, in
the nominally d1 and d2 compounds the three-t2g-orbital (the
dashed curves) and five-orbital (the solid curves) calculations
yield essentially indistinguishable results, whereas in the
nominally d3 materials, inclusion of the eg manifold changes
the physics significantly, drastically decreasing the parameter
regime over which insulating behavior is found.

To explicate the reason for the difference, we show in
Fig. 6 the density of states computed in the DFT + Hartree
calculation for SrMnO3, with parameters tuned so that the
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FIG. 5. (Color online) Metal-insulator phase boundary computed using the DFT + Hartree approximation for the Sr and La-based
perovskites in the cubic and GdFeO3-distorted structures and displayed in the plane of t2g occupancy and interaction U , with the Hund’s
coupling J = 0.65 eV. The solid lines show the phase boundary computed using the full 5d-orbital model, while the dashed lines show the
results obtained by restricting to the t2g-only manifold. The dotted curves are the phase boundaries of LaTiO3 and LaVO3 using their real
structures (LaTiO3 has two dotted curves with an area of phase separation in between). The insulating (metallic) regime is to the left (right) of
the phase boundary. The vertical lines mark the values of t2g occupancy obtained from density functional band calculations.

system is in the metallic state but on the boundary of the
insulating phase. It is evident that the gap is between the t2g

and eg manifolds; inclusion of the eg states is thus essential
to describe the physics. By contrast, in the nominally d1,2

materials, the excitation gap is to unoccupied t2g states; eg

states do not play an important role in the metal-insulator
transition. Further, we observe that in contrast to the d1 and d2

FIG. 6. (Color online) Density of states for SrMnO3 at U = 4 eV
and J = 0.65 eV generated using DFT + Hartree assuming unbroken
translational symmetry and using five d and nine oxygen p orbitals.
The double-counting correction is adjusted so that Nd = 3.3 and
the system is at the metal-insulator phase boundary. The solution is
ferromagnetic with no orbital ordering. The positive (negative) DOS
is for the majority (minority) spin. The vertical line marks the Fermi
level.

systems, where the insulating gap is closely related to the p-d
splitting, which is directly connected to Nd , in the d3 systems
the insulating gap arises from the eg-t2g splitting which is
affected only indirectly by Nd .

Figure 7 demonstrates the effect of local chemistry by over-
laying the phase diagrams obtained for the cubic-perovskite
Sr and La materials. We see that when expressed in the U -Nd

plane there is almost no difference in the location of the metal-
insulator phase boundary, except in the region of Nd very near
the atomic limit where small differences in the (very small, but

FIG. 7. (Color online) Comparison of DFT + Hartree phase di-
agrams for Sr-based and La-based perovskites. All calculations are
performed for cubic structures. The full 5d orbital model is used.
Hund’s coupling is J = 0.65 eV.
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not zero) d-d hopping lead to slight differences in the location
of the phase boundaries. We conclude that for the hypothetical
cubic structures the only difference between the Sr and La
materials is the different electronegativities of the transition-
metal ions, which lead to differences in the p-d energy splitting
and thus to the d occupancies of the transition-metal ions. This
again underscores the importance of charge-transfer physics
in early transition-metal compounds.

The phase diagrams for LaTiO3 and LaVO3 in the ex-
perimental (GdFeO3-distorted) structure are shown in Fig. 5.
The unit cell of the GdFeO3-distorted structure contains four
transition-metal ions; thus “staggered” (in cubic notation)
phases may be found in a DFT + Hartree calculation even
without further spatial symmetry breaking. However, to
understand the effect of the lattice distortion, in this figure,
we restrict our study to ferromagnetic and ferro-orbital states
(in cubic notation), in other words we require that the spin and
orbital states of each octahedron are the same.

Figure 5 shows that the main effect of the GdFeO3

distortion is to shift the location of the phase boundaries: the
insulating state extends over a wider parameter range in the
GdFeO3-distorted structure than in the cubic structure, and
the enhancement is larger for LaTiO3 than for LaVO3. One
might imagine that a significant contribution to the difference
arises from the decrease in bandwidth caused by the GdFeO3

distortion. In the distorted structure, the B-O-B bond (B is
the transition-metal atom) is buckled, reducing the amplitude
for an electron to hop from one B site to the next. In our DFT
calculations (not shown), the bandwidth of the p-d antibonding
bands is reduced by 25% for LaVO3 and ∼20% for LaTiO3.
However, we observe that a decrease in bandwidth is equivalent
to an increase of U , in other words, to a vertical shift of the
phase boundary in Fig. 5. As can be seen by inspection of
the figures, vertically shifting the curve obtained for the cubic
system does not make it coincide with the phase boundary
obtained for the distorted one. In fact, as already noted by
Pavarini and co-workers [12], the key physics is that the
distortion breaks the orbital symmetry, leading to a “1 down
2 up” distortion that promotes orbital order. This orbital order
strongly favors the insulating state in LaTiO3. However, in
high-spin d2 systems such as LaVO3, the natural symmetry
breaking associated with an insulating phase would be of the
“2 down 1 up” type, which is not produced by the GdFeO3

distortion. The actual “1 down 2 up” orbital splitting has a
much smaller effect.

Figure 5 also shows that at very large U the phase boundary
is not vertical but bends back. The back-bending reflects the
decrease of the occupancy of high-lying minority-spin d states
as they are pushed to very high energies by the large U .
Calculations (Fig. 8) of the spin-resolved d occupancy show
that, in the d1, d2, and d3 cases, the majority spin d occupancy
tends to a U -independent asymptote as U is increased while
the minority spin occupancy decreases. We expect that as
U → ∞, the minority spin d occupancy goes to zero and the
phase boundary in the U -Nd plane asymptotes to a vertical (U -
independent) line. For GdFeO3-distorted cases, the bending of
LaTiO3 is larger than that of LaVO3 (see Fig. 5) because of the
splitting of unoccupied orbitals arising from the strong orbital
polarization. This strong orbital polarization allows a decrease
in the occupancy of the nominally empty majority spin orbitals

FIG. 8. (Color online) The d occupancy of majority and minority
spins for SrVO3 as a function of U with the total Nd chosen so that
the system is at the MIT [going along the SrVO3 phase boundary, see
Fig. 5(a)].

in addition to the decrease in minority-spin occupancy. In
LaVO3 (d2 systems), the orbital splitting is negligible and
there is no such effect. We note that this back-bending is
amplified in the DFT + Hartree calculations by the strong spin
and orbital polarization found in this approximation. In the
DMFT calculation, as shown later, the unoccupied states are
not split as much and so this behavior is less pronounced.

The DFT + Hartree method combined with the standard
FLL double counting, a physically reasonable value of U ∼
5 eV and the experimental structure predicts an insulating state
for LaTiO3 and LaVO3 in agreement with experiment. We
believe that this apparent agreement arises from a cancellation
of errors and is simply fortuitous. The two errors are that
Hartree approximations are known to overestimate order and
therefore favor insulating states, and that the DFT approx-
imation overestimates Nd and therefore underestimates the
tendency to order. Later in the manuscript, we will demonstrate
that the same calculation using DFT + DMFT(QMC) results
in a metallic state, and we show that the double counting must
be adjusted in order to properly capture the insulating state
and the spectra.

V. DFT + DMFT CALCULATIONS

The Hartree approximation does not include quantum
fluctuations arising from electronic correlations and cannot
capture the paramagnetic Mott insulating phase, which is
observed experimentally in many early transition-metal ox-
ides [3] including LaTiO3 and LaVO3. To treat the correlation
more properly, it is necessary to go beyond the mean-field
approximation. In this section, we use the dynamical mean-
field method to study the metal-insulator transition in the
paramagnetic DFT + DMFT framework [5].

The procedure follows the one discussed above in the
context of the Hartree approximation but with the local self-
energy computed using the single-site DMFT approximation
rather than the Hartree approximation. A DMFT solution for
the full five-orbital model is too expensive for wide surveys
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FIG. 9. (Color online) The metal insulator phase diagrams of
LaTiO3, LaVO3, and LaCrO3 calculated using the DFT + DMFT
and DFT + Hartree procedures described in the text but retaining
only the t2g portion of the d manifold, presented in the U -Nd plane.
(a) Metal-insulator phase diagrams calculated assuming that the
materials are in the cubic perovskite structure using DFT + DMFT
(dashed-dotted curves with symbols) and DFT + Hartree (solid
curves). (b) The phase boundaries obtained using the experimental
(GdFeO3-distorted) structures using DFT + DMFT. The vertical
dashed lines are t2g occupancies derived from DFT + MLWF. The
temperature is T = 0.1 eV. The insulating (metallic) regime is to the
left (right) of the phase boundary.

of parameter space. In most of our DMFT calculations, we
therefore use the model with transition-metal t2g bands (and
oxygen p bands), but for selected points we present results
obtained with the full five-orbital model.

We first compare the results obtained using DMFT and
Hartree calculations for the La series in Fig. 9. Panel (a)
shows results obtained for a hypothetical cubic structure. The
difference between the DMFT and Hartree phase boundaries
is substantial in LaTiO3 and much less for the other two
compounds. As the nominal number of d electrons increases,
the DMFT solution becomes more insulating and in the d3

case (LaCrO3), DMFT predicts a larger insulating regime than
does the Hartree calculation.

This change in DMFT phase boundary is a consequence of
the Hund’s coupling J , which behaves differently for systems
with different d valence. Some aspects of the differences
between materials can be understood from atomic-limit esti-
mates, following Ref. [58]. In the atomic limit, the energy cost
to move a d electron from one transition-metal atom with N

valence electrons to another is �(N ) = E(N + 1) + E(N −
1) − 2E(N ). At half-filling, (N = 3), �(N = 3) = U + 2J ,
while for d1 and d2 cases, � = U − 3J . Therefore, with
J �= 0, we expect d3 systems have the largest gaps and hence
the smallest Uc for the MIT, explaining the large enhancement
of insulating regime in LaCrO3. However, the atomic limit
gaps for atomic d1 and d2 are equal, suggesting that LaTiO3

and LaVO3 should have comparable Uc. The differences in
phase boundary arise because in the vanadate case there
is some admixture of d3 into the ground state, leading
to more insulating behavior. This difference is thus a

FIG. 10. (Color online) Spectral functions A(ω) for cubic
LaTiO3, LaVO3, and LaCrO3 at U = 5 eV, J = 0.65 eV and Nd

chosen to be close to the MIT phase boundaries. The dashed curves
(black online) are oxygen p bands, the solid curves (red online) are
correlated d bands. The vertical line marks the Fermi level.

consequence of charge-transfer physics in the early transition-
metal oxides.

It is interesting to note that for LaCrO3 the DMFT
calculation has a larger regime of insulating behavior than
the Hartree calculation. This does not contradict the general
statement that the Hartree approximation overestimates order;
it merely shows that our DFT + Hartree calculations, which
were restricted to ferromagnetic and ferro-orbital states, did
not include the correct long-ranged order for this compound.
Calculations (not shown) allowing for antiferromagnetic
order would produce a much larger regime of insulating
behavior.

Figure 10 shows the one-electron spectral functions (in-
teracting DOS) of hypothetical cubic LaTiO3, LaVO3, and
LaCrO3 with U = 5 eV, which is around the typical U value
computed for early transition-metal oxides in the perovskite
structure [15]. Nd is adjusted so that the systems are insulating
but close to the transition to the metallic state. We see that to
drive hypothetical cubic LaTiO3 into the insulating state one
must shift the oxygen bands to about −10 eV far from the
Fermi level. This energy for the oxygen states is in very sub-
stantial disagreement with the experimental value ∼−3.5 eV
although the gap between the highest occupied states and the
lowest unoccupied ones is consistent with the experimental
value. For LaVO3, an insulating state can be obtained for
oxygen bands closer (−5 eV) to the Fermi level, but this
oxygen band energy remains in substantial disagreement with
experiment. Finally, in LaCrO3, an insulating state can be
obtained even for p states very close to the Fermi level. These
observations illustrate the necessity of including the octahedral
rotations.

We now discuss the results of DMFT calculations for
LaTiO3 and LaVO3 using the experimental structures. Some
of the results have been partly discussed in Ref. [52].
Here, we go beyond the results of Ref. [52], in particular
discussing in detail the effects of the structural distortion and
providing a comparison to the DFT + Hartree calculations.
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FIG. 11. (Color online) Spectral functions A(ω) for cubic (neg-
ative value) and GdFeO3-distorted (positive value) structures of
LaTiO3 and LaVO3 at values U = 5 eV, J = 0.65 eV and Nd chosen
to be close to the MIT phase boundaries. The dashed curves (black
online) are the average spectra per band for oxygen p bands, the solid
curves (color online) are correlated d bands. The vertical dashed line
marks the Fermi level.

The MIT phase diagrams for LaTiO3 and LaVO3 obtained
using DMFT calculations performed using the experimental
structures (solid curves) are shown in Fig. 9(b) in comparison
with those obtained using the hypothetical cubic structure
(dotted-dashed curves). As in the DFT + Hartree calculations,
increasing the magnitude of the rotational lattice distortion
enlarges the insulating regime, both in U and Nd with the
increase being larger in LaTiO3 than in LaVO3.

The qualitative similarity of the DMFT and Hartree results
(see Sec. IV) suggests that insights gained from the Hartree
calculations can be applied to understand the DMFT results.
First, the lattice distortion decreases the antibonding band-
width W by 20% → 25%. In the Mott-insulating regime (small
U region), the critical Uc for Mott transition is proportional
to W , with a smaller bandwidth in the distorted structure,
so the critical U becomes smaller. In the charge-transfer
regime (large U region), the reduced p-d hybridization means
oxygen p bands must come closer to the d states in order
to induce enough covalency to destroy the insulating state.
The difference in the enhancement of the insulating regime
between LaTiO3 and LaVO3 arises from orbital ordering. In
the experiment structure, the t2g orbitals in both materials
experience a crystal field splitting. In the DFT calculation,
LaTiO3 has a weak “1 up, 2 down” orbital order (one orbital is
occupied more than the other two). The DMFT results indicate
that this type of orbital ordering is enhanced significantly
by interactions [Fig. 11(a)], although the precise degree of
enhancement depends on the value of Nd . For LaVO3, the
DMFT calculation indicates that there is almost no orbital
order. We believe that the lack of orbital ordering occurs
because the virtual charge fluctuations in the d2 state lead
to a significant admixture of d3, and the tendency of the
Hund’s coupling to favor high spin then reduces the tendency
to order. Thus, with the DMFT approximation, we conclude
that in LaTiO3 the orbital splitting induced by the GdFeO3

rotation is essential for Mott behavior, while in LaVO3, the
main effect of the distortion is to reduce the bandwidth.
The bandwidth reduction also favors order, but to a lesser
degree [58,59].

VI. DETERMINING PHYSICALLY RELEVANT VALUES
FOR U AND THE DOUBLE COUNTING

In previous sections, we studied the general structure of the
theoretical results, varying the p-d splitting and interaction
strength over wide ranges. In this section, we ask how to
choose reasonable values for the actual systems by estimating
the interaction and p-d splitting parameters.

First, we specify the correct values of the Hubbard value U

and the Hund’s coupling J [defined in Eq. (4)] for materials.
The Hund’s coupling is only weakly renormalized by solid
state effects [15,62], and is believed to be of the order
of 1 eV or slightly less. Reference [15] shows that J is
around 0.65 eV for SrVO3, SrCrO3, or SrMnO3 (using the
energy window including p and d bands and symmetrizing
over the interactions of the t2g bands) and we adopt this
throughout our paper. In contrast, the U value is screened
strongly [15,62], being five or six times smaller than the bare
value, with the precise renormalization depending on material
parameters. For SrVO3, Ref. [15] estimates U = 4.1 eV (note
we have expressed the result of Ref. [15] using the Kanamori
parametrization). Because the La-based materials are Mott
insulators, one might expect the screening to be slightly less,
so the U values might correspondingly be slightly larger. In
Ref. [52], we show that within the MLWF scheme, only a range
of U ∼ 6 ± 1 eV can reproduce both the observed insulating
gap and the position of the oxygen states so we suggest that
this value is reasonable. We note, however, that our results are
not strongly sensitive to U .

We also note that a recent paper [16] using fully-charge self-
consistent DFT + DMFT calculations with d states defined via
a projector method argued that U = 10 eV is reasonable for
oxides. The origin of this difference requires further investiga-
tion. One important issue is the difference in p-d hybridization
between Wannier and projector methods. The relatively larger
p-d hybridization in the projector method requires a larger
U to obtain an insulating state. Other technical differences
occur in the calculation, including in particular the use of a
broader energy window, incorporating, e.g., La-derived bands.
A calculation of the screened Coulomb interaction within the
system defined in Ref. [16] would be of interest.

The next crucial issue is the value of the p-d energy
difference or double-counting correction, parametrized here
by the d occupancy Nd . We first note that the Nd values
can be different depending on the method used to define the
correlated subspace. The results presented in this section are
obtained using one of three different methods: VASP projector
(in DFT + U calculations), WIEN2K+TRIQS projector (in fully-
charge self-consistent calculations), and MLWF method (in
“one-shot” DMFT calculations). We will therefore note the
method together with the Nd value.

We carried out fully charge self-consistent calculations
using the DFT + DMFT framework with realistic structures
and FLL double counting. Figure 12 shows Nd − NDFT

d as a
function of U for several materials. The changes are small
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FIG. 12. (Color online) The dependence of d occupancy Nd on
the interaction U using fully charge self-consistent calculations
with FLL double-counting correction (WIEN2K+TRIQS code [60,61]).
The temperature is T = 0.1 eV. The calculations use projector
method [37] to obtain the full five correlated d orbitals. Note that the
y axis is the difference between Nd and the DFT value NDFT

d where
the NDFT

d values are 2.60,1.81,2.92, and 4.81 for SrVO3, LaTiO3,
LaVO3, and SrMnO3, respectively.

relative to the total Nd for d1 and d2 materials (SrVO3,
LaTiO3, LaVO3). Figures 13(a), 13(c), and 13(d) are the
spectra of SrVO3, LaTiO3, and LaVO3 corresponding to the
U values used in Fig. 12. As the d occupancies of these
materials do not change much, the change in the spectra
of these materials are insignificant. More importantly, the
DFT + DMFT calculations with full charge self-consistency
and FLL double counting predict that all of the d1 and
d2 perovskites are metals as can be seen directly from
the calculated spectra shown in Fig. 13. We conclude that
the standard DFT + DMFT with FLL double counting does
not put materials in the correction positions in the phase
diagrams, as from experiments, LaTiO3 and LaVO3 are Mott
insulators [63].

The case of SrMnO3 is different. When applied to SrMnO3

the fully charge self-consistent DMFT procedure leads to an
Nd significantly smaller than the DFT value (see Fig. 12) and

TABLE II. The first row is experimental data for the energy gaps
from Ref. [63]. The values of “exp. oxygen bands position” and “exp.
Nd” are the p band positions and the d occupancy values obtained
from Fig. 15 where the spectra match experiments. The “DFT Nd”
values are from DFT calculations (with MLWF method) and the
“DFT oxygen band positions” are the p band positions obtained from
Fig. 14.

SrVO3 LaTiO3 YTiO3 LaVO3

Exp. energy gap 0 0.3 eV 1 eV 1 eV
Exp. oxygen bands position 2.4 eV 5.35 eV 4.95 eV 4.35 eV
DFT oxygen bands position 1.5 eV 3.25 eV 3.15 eV 2.5 eV
Exp. Nd 1.73 1.28 1.31 2.24
DFT Nd 1.99 1.56 1.57 2.55

places the material at the edge of the insulating regime. Part
of the difference from the d1 and d2 materials may relate to
the half-filled nature of the t2g shell, but understanding why
the Mn material is so different from the others remains an
important open problem.

As shown above, the fully charge self-consistent results
yield d occupancies for d1 and d2 systems that are close to the
DFT values. We thus conduct “one-shot” DMFT calculations
(using the MLWF correlated subspace) for SrVO3, LaTiO3,
LaVO3, and YTiO3 with the double-counting correction
adjusted to have the d occupancies close to the DFT values.
This will elucidate the role of using a different type of
correlated subspace. Figure 14 shows the spectra at U = 5 eV,
in which all materials are in metallic state, confirming that
our results are not dependent on the details of the correlated
subspace. Moreover, the two different methods used to produce
Fig. 13 (the projector method [37]) and Fig. 14 (MLWF
method [30,49]) give oxygen p bands positions quite close
to each other, with the largest difference found in LaTiO3

where the difference in the p band position is about 0.7 eV.
Even though there are differences between different projection
methods, the spectra in Figs. 13 and 14 show that full charge
self-consistency is unnecessary: if the d occupancy is known,
one can reproduce the fully charge self-consistent result using
one-shot calculation with the Nd adjusted to the known value.
Of course, this presumes that one is using a normalized
projector which is defined over a similar energy region as
the Wannier functions, which are used to define the correlated
subspace.

As found in Fig. 9, the d occupancy must be reduced to drive
the d1 and d2 systems (LaTiO3, LaVO3, and also implying for
YTiO3) into insulating state. Therefore, in one-shot DMFT,
the double-counting correction must be decreased to reduce
the p-d covalency, and thus reduce Nd . Figure 15 shows
the spectra with the double-counting correction adjusted in
order to match the experimental spectra. In this figure, with
U = 5 eV, the calculated spectra are compatible with the
experiments not only for the oxygen p band position but also
the energy gap for insulators. The results clearly show that
applying the standard FLL double counting to the computed
band structure is inappropriate.

Thus to summarize, for all reasonable values of U , the
standard scheme of FLL double counting plus the fully charge
self-consistent DFT + DMFT procedure yields for LaTiO3

(d1) and LaVO3 (d2) materials (and implying for YTiO3) a
d occupancy, which is very close to that predicted by the
underlying DFT calculation, and for this d occupancy, the
materials are predicted to be metals, in contrast to experiment,
which finds them to be Mott insulators. The phase diagrams
in Fig. 9 suggest that to fix this discrepancy, the Nd value
must be smaller than the DFT values and the FLL predicted
values for LaTiO3 and LaVO3. Equivalently, the oxygen
bands must lie lower in energy than predicted by the DFT
calculations and the DFT + DMFT calculations, which use
the standard FLL double counting. The data presented in
Table II makes this argument quantitative, showing the p-d
energy splitting, parametrized as the position of the oxygen
bands relative to the Fermi level (defined in insulators as the
middle of the gap) obtained from experiment and from DFT
calculations. We see that the p-d splitting predicted by the DFT
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FIG. 13. (Color online) Full charge self-consistent spectral functions using FLL double-counting correction (WIEN2K/TRIQS) for (a) SrVO3,
(b) SrMnO3, (c) LaTiO3, and (d) LaVO3 at various U values. The spectra are corresponding to the Nd vs U plots in Fig. 12 at U �= 0. Note that
only the average for each t2g,eg and p types is plotted in order to make the plots easy to see.

calculations (which, as discussed above, is almost the same as
the p-d splitting obtained from fully charge self-consistent
DFT + DMFT calculations with the FLL double counting)
is significantly smaller than the experimental p-d splitting.
Table II also presents the d occupancy obtained from DFT
calculations and from one-shot calculations with the p level
adjusted to the experimental values. We see that the DFT
calculations overestimate the p-d covalence. We therefore
suggest that one should focus on the position of oxygen p

bands to locate the material on the phase diagram.

VII. COMPARISON TO THE d-ONLY
CORRELATED SUBSPACE

Previous sections showed that p-d covalency is important.
However, unlike the case of “late” transition-metal oxides such

as the nickelates and cuprates, materials [38] where the oxygen
p bands are close to the Fermi level and play an essential role
in determining the physics, the relatively large p-d splitting
characteristic of the early transition-metal oxides suggests that
a d-only correlated subspace may capture important aspects.
In this section, we will compare the two approaches. For
simplicity, we will use the term “d-only model” and “p-d
model” to refer to the use of a correlated subspace created
from frontier orbitals near the Fermi energy and well localized
atomic orbitals, respectively.

For calculations with the d-only model, the basic
DFT + DMFT framework is reapplied. The only change is
in the construction of the correlated subspace: in the d-only
model, the energy window must be reduced to include only the
t2g bands (assuming, for simplicity, that we deal only d1 and
d2 systems in which eg bands do not make any significant
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FIG. 14. (Color online) Spectral functions A(ω) for SrVO3,
LaTiO3, YTiO3, and LaVO3 using realistic lattice structure at U =
5 eV, J = 0.65 eV and Nd (obtained from MLWF method) chosen to
be close to the value from ab initio calculations. The dashed curves
(black online) are the average spectra per band for oxygen p bands,
the solid curves (color online) are the three correlated t2g bands. The
vertical dashed line marks the Fermi level.

contribution). Additionally, we will only examine the spectra
of the correlated states, which means that we will not need
to consider a double-counting correction and charge self-
consistency will not be employed. All other steps are carried
out as in the previous sections. The calculations use the same
parameters J = 0.65 eV and β = 10 eV−1 as in the previous
p-d model calculations, while the U value is reduced so
that the calculated spectra have the same energy gap as in
the p-d model. The correlated subspace is defined using the
MLWF method from the same DFT results used in previous
section (with GdFeO3-distorted structure), ensuring a fair
comparison.

FIG. 15. (Color online) Spectral functions A(ω) for SrVO3,
LaTiO3, YTiO3, and LaVO3 using realistic lattice structure at
U = 5 eV, J = 0.65 eV and � is adjusted to match experimental
photoemission spectra (PES). The PES are from Refs. [3,64–66].
The vertical dashed line marks the Fermi level.

FIG. 16. (Color online) Comparison between d-only and full p-d
models for LaTiO3, LaVO3, and YTiO3. Positive (negative) spectra
are spectra of t2g orbitals for d-only (full p-d) model. The parameters
J = 0.65 eV and the inverse temperature β = 10 eV−1 are the same
for both models. For the p-d model, U = 5 eV and the double
countings are set as in Fig. 15. For the d-only model, U = 4.5 eV for
LaTiO3 and LaVO3 and U = 4 eV for YTiO3. Vertical dashed line
marks the Fermi level.

The spectral functions obtained in the full (p-d) and d-only
models are shown in Fig. 16; only the energy range relevant
to the d-bands is displayed. Both models show the same
physics: both types of spectra behave as insulator with the same
orbital ordering for each materials in consideration (LaTiO3

and YTiO3 have “1 up 2 down” orbital order while LaVO3 has
almost no orbital order). There are some differences of details
in the spectra, in particular in the positions of peaks arising
from the bands above the Fermi levels, and the magnitude of
the peaks, which are affected by p-d covalency and subject to
the uncertainties of the maximum entropy analytic continua-
tion used here. If we define orbital order in terms of the total
occupation of the d level, the degree of orbital order is larger in
the d-only model than in the p-d model for all cases considered
in Fig. 16. However, in the p-d model, some portion of the d-
spectral weight resides relatively far below the Fermi level, at
the energy of the oxygen p bands. A more reasonable compar-
ison between the two models may be obtained by comparing
the fraction occupancy of the d spectrum in the energy range
common to both approaches, i.e., from −4 eV to 0 (c.f. Fig. 16).
Considering only contributions from this energy range, we
find that the distribution of d occupancies is, for LaTiO3,
(69.7%,14.2%,16.1%) and (70.7%,13.2%,16.1%) for d-only
and p-d models, respectively; the corresponding numbers
are (35.2%,33.9%,30.9%) and (35.5%,32.9%,31.6%) for
LaVO3 and (78.6%,11.0%,10.4%) and (79.0%,11.3%,9.7%)
for YTiO3. Thus the full p-d model is in good agreement with
the d-only one if a reasonable effective U is chosen for the
latter model.

There are differences between the two models, arising
mainly from the effects of p-d covalency. First, in the p-d
model, there is always a d portion in the bonding part of
the spectra, which may cause differences in the d occupancy
or the orbital ordering, but these differences disappear if the
same low energy window is considered for calculating the
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d occupancy. A second effect of the oxygen p bands is to
reduce the electron correlation, so that to produce comparable
band gaps one must use a smaller U in the d-only model
than in the full p-d model, as shown in Fig. 16. Therefore
it appears that the d-only model provides a reasonable
representation of the low energy physics of the p-d model
if the interaction U is appropriately renormalized. It should be
noted, however, that the results presented here pertain only to
the paramagnetic case. Preliminary results [67] indicate that
the two models yield rather different predictions for magnetic
ordering temperatures, but a full exploration of this question
is beyond the range of this study.

We remark that by using the same U , J , and β as in
Refs. [12,31,32], we produce (not shown) very similar results
for LaTiO3, LaVO3 and YTiO3 using the same d-only model.
While the energy gaps are similar, the orbital polarization we
find is slightly weaker. In our calculations, the dominant orbital
has the occupancies 0.88 (LaTiO3) and 0.91 (YTiO3), while
the corresponding numbers in previous works are 0.88 and
0.96 [31]; for LaVO3, our t2g occupancies are 0.73,0.68,0.59,
while Ref. [32] gives 0.87,0.65,0.48. We believe that these
differences arise from differences in the construction of the t2g

subspace. Without any correlation effect, our MLWF approach
produces DOS with smaller polarization (e.g., for LaVO3:
0.71,0.66,0.63), while the method used in Ref. [32] gives
stronger orbital order (LaVO3: 0.78,0.63,0.59). Correlations
will then enhance the orbital order, which explains for
differences between our study and previous work, but the
differences are quantitative not qualitative. In particular, we
reproduce the key role played by the GdFeO3 distortion, which
enhances the tendency to forming an insulating state in the d1

systems, whereas in the d2 systems, the orbital fluctuation is
larger and the effect of the distortion on the insulating state is
weaker.

VIII. CONCLUSIONS

In this study, we have investigated the consequences of p-d
covalency for the metal-insulator physics of early transition-
metal oxides. We used the DFT + U and DFT + DMFT
methods, with correlated subspaces defined via projector and
MLWF methods. By adjusting the d level energy (i.e., the
correlated subspace) and the onsite interaction, we built metal-
insulator phase diagrams for materials of interest, mapping to
the space of interaction U and d occupancy. We examined
possible methods for locating materials in the phase diagrams
and found that the standard FLL double-counting correction
[Eq. (3)] gives a d occupancy close to the DFT values and fails
to predict the correct phase of certain materials. However,
with an appropriate double-counting correction, the spectral
functions match well with the experimental photoemission
spectra and the metallic versus insulating nature of the
predicted ground states is in agreement with experiment. We
also investigated the possibility of using a correlated subspace
consisting only of delocalized, frontier orbitals (i.e., d-only)
and found that if proper parameters were used the results
of well localized, atomiclike correlated subspace could be
satisfactorily reproduced.

Important results obtained in this study include the fol-
lowing. First, the p-d covalency is not only important in late

transition-metal oxides, as predicted by Zaanen, Sawatzky and
Allen [38], but also crucial in the early transition-metal oxides.
In essence, the p-d splitting is not larger than the important U

values and p-d covalency acts to suppress electron correlation.
While we showed that effective d-only models can capture
many aspects of the low-energy physics, for a full treatment it
is necessary to include the oxygen p bands in the calculations
even for early transition-metal oxides.

Second, the DFT + DMFT framework, with an appro-
priate choice of double-counting correction, gives results
(photoemission spectra, energy gaps, oxygen p positions)
in reasonable agreement with experimental data. However,
this agreement could not be obtained without experimental
guidance: the double-counting correction had to be adjusted to
match with a corresponding experimental quantity (the energy
gap or the oxygen p band position). The standard ab initio
methods based on double-counting corrections such as the
FLL formula, in contrast, fail to put materials in the correct
phase. This raises the important question of how to define a
proper double-counting correction.

Our results also confirm the importance of including
realistic crystal structures. We find (as did Pavarini et al. [12])
that the Mott insulating behavior of LaTiO3 and YTiO3 can
only be understood in terms of the experimental (GdFeO3-
distorted) structure, which acts to split the t2g levels.

We found that the much less computationally expensive
Hartree method, and hence DFT +U , can well approximate
certain aspects of DMFT calculations. Given a DFT + Hartree
phase diagram, depending on the nominal number of d

electrons, one can extrapolate the DMFT phase diagram
by shifting the phase boundary by an appropriate amount
(see Fig. 9). One can get a crude picture of the DMFT
paramagnetic spectra by averaging the spin-up and down
spectra generated by DFT + Hartree calculation. The greater
computational convenience of the DFT + Hartree calculations
enabled a more detailed examination of several important
aspects of the physics and formalism. In particular, the
DFT + Hartree calculations reveal that projector methods
provide substantially more p-d hybridization than do the
Wannier methods used by many workers; this substantially
affects the calculated results, and (with the different choice of
double-counting correction) explains much of the difference
between the results of Ref. [16] and those presented here.
Understanding the origin of this difference and determining
which method is more correct is an important open problem.

We have shown that the DFT + single-site DMFT method,
combined with the phenomenological approach of adjusting
the double-counting correction to place the p bands at the
correct energy positions, provides a successful description of
a wide range of transition-metal oxides. This suggests several
directions for future work. First, it is important to understand
the evolution of the p-d covalency across the transition-metal
series as the d shell is gradually filled. Extending our studies
to the materials in the crossover between early and late
transition-metal oxides, in which all five d bands have to
be taken into account is warranted. Other aspects of the
metal-insulator transition such as the temperature dependence
or the metal-insulator coexistance region are also interesting
topics. It is also important to apply this model to study
other properties such as spin/orbital ordering or reexamine
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works done with d-only models to understand how the p-d
covalency affects the systems. Finally, finding an appropriate
double-counting correction that correctly positions the d bands
relative to the oxygen bands is an important open problem. One
promising approach would be to extend the U ′ ansatz [42] to
the early transition-metal oxides.
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