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Ideal strength and phonon instability of strained monolayer materials
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The ideal strength of monolayer materials possessing semimetallic, semiconducting, and insulating ground
states is computed using density functional theory. Here we show that, as in graphene, a soft mode occurs at
the K point in BN, graphane, and MoS2, while not in silicene. The transition is first order in all cases except
graphene. In BN and graphane the soft mode corresponds to a Kekulé-like distortion similar to that of graphene,
while MoS2 has a distinct distortion. The phase transitions for BN, graphane, and MoS2 are not associated with
the opening of a band gap, which indicates that Fermi surface nesting is not the driving force. We perform an
energy decomposition that demonstrates why the soft modes at the K point are unique and how strain drives the
phonon instability.
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I. INTRODUCTION

Ideal strength, the maximum stress an infinite, defect-free
crystal can withstand at zero temperature, is an upper limit
that provides a measure for the intrinsic strength of the
chemical bonding and overall stability of a material [1].
Ideal strength is ultimately dictated by what is known as
the elastic instability, whereby a crystal becomes unstable
with respect to a homogeneous deformation along the strain
path. This scenario corresponds to an imaginary-frequency or
“soft” phonon mode of vanishing wave vector (q → 0) and a
maximum in the stress-strain curve. However, a finite-wave-
vector phonon instability, known as a soft mode, occurring
at a lower stress than that of the elastic instability can also
limit a material’s ideal strength via the transformation to a
new structure with a lower elastic instability. Acoustic phonon
instabilities have been predicted to limit the ideal strength of
bulk aluminum [2] and bulk silicon [3] for certain strain modes.

Monolayer materials are an optimal testbed for studying
the possibility of strength-limiting soft modes since they
can be fabricated with unprecedented levels of crystalline
perfection. Under conditions at or close to equibiaxial strain,
the mechanical failure of graphene was found to stem from
an optical phonon instability at the K point of the Brillouin
zone (BZ) in which the pristine honeycomb structure distorts
towards a Kekulé-like structure of isolated C6 regular hexag-
onal rings [4]. Since this structural transformation opens a
gap at the Fermi surface by breaking the symmetry of the
honeycomb structure [5,6], it has been proposed that the soft
mode in graphene is a two-dimensional (2D) manifestation of a
Peierls instability [7]. This has stimulated work documenting
the effect of doping on the instability [8,9]. Given that the
essence of the Peierls instability arises from the properties
of one-dimensional systems, clearly this analogy is limited
and this instability cannot solely be attributed to the Fermi
surface. Nonetheless, the degree to which the opening of a gap
at the Dirac point drives the instability is an open question. Li
recently found that single-layer molybdenum disulfide (MoS2)
also exhibits a soft mode under equibiaxial strain [10], which
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further raises the question of the origin and generality of
phonon instabilities in monolayer materials.

Here we employ density functional theory (DFT) calcula-
tions to investigate a structurally and electronically diverse set
of existing 2D crystals—graphene, single-layer boron nitride
(BN), graphane, MoS2, and silicene—under equibiaxial strain
in order to gain insight into the nature of phonon instabilities
in monolayer materials. In addition to graphene and MoS2, we
find a soft mode at the K point for BN and graphane, leading
to mechanical failure for BN. We show that the nature of the
distortion in BN is completely analogous to graphene, despite
the fact that BN has a large band gap. This illustrates that
Fermi surface nesting is not the general driving force of this
instability. In order to elucidate the physics of this instability,
we perform a decomposition of the total energy into two terms
which reasonably embody the electronic and elastic aspects of
the energetics. This demonstrates the potency of the electronic
term for the K-point soft mode in addition to the rapid decay
of the elastic term as a function of strain.

II. COMPUTATIONAL DETAILS

Non-spin-polarized DFT [11,12] calculations within the
generalized gradient approximation of Perdew, Burke, and
Ernzerhof [13] are performed using the Vienna ab initio sim-
ulation package (VASP) [14–17]. The Kohn-Sham equations
are solved using a plane-wave basis set (kinetic energy cutoff
of 420 eV for MoS2 and silicene, 450 eV for graphene and
graphane, and 500 eV for BN) and the projector augmented
wave method [18,19] with soft projectors for B, C, and N.
The primitive unit cell in-plane lattice vectors are chosen to be
a1 = √

3l/2 x̂ − 3l/2 ŷ and a2 = √
3l/2 x̂ + 3l/2 ŷ, where l is

the in-plane length of the nearest-neighbor C-C, B-N, Mo-S,
and Si-Si bond for graphene and graphane, BN, MoS2, and
silicene, respectively. The in-plane lattice vectors of the K-cell
supercell [4] commensurate with a K-point lattice distortion are
A1 = 2a1 + a2 and A2 = a1 + 2a2. The out-of-plane lattice
vector length is chosen to be 14 Å for graphene, BN, graphane,
and silicene, and 16 Å for MoS2. To sample reciprocal space we
employ k-point grids of 20×20×1 for MoS2 and silicene and
24×24×1 for graphene, graphane, and BN for the primitive
cell and 8×8×1 for graphene, BN, and MoS2 and 9×9×1
for graphane for the K cell. The total energy, ionic positions,
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and stress tensor components are converged to 10−6 eV,
0.01 eV/Å, and 10−3 GPa, respectively. Phonons at the K point
are obtained using the frozen phonon method. To compute
stress-strain curves the unit cell is equibiaxially strained, ionic
positions are randomly displaced in each Cartesian direction
between 0 and approximately 0.05 Å to allow symmetry
breaking, and then the ions are fully relaxed. We renormalize
the equibiaxial true stress σ = (σxx + σyy)/

√
2 of each 2D

material to the interlayer spacing of the most closely related
bulk material [20] to give a physical reference for stress values.
Density functional perturbation theory [21] calculations in the
QUANTUM ESPRESSO package [22] are performed at the same
level of theory with a 10×10×1 q-point grid for the initial
search for soft modes as a function of equibiaxial strain.

III. RESULTS AND DISCUSSION

For BN and graphane, in addition to graphene [4] and
MoS2 [10], under equibiaxial strain the first instance of the
eigenvalues of a phonon branch becoming imaginary at a
finite wave vector occurs at the K point. The critical values
of equibiaxial engineering strain ε = (εxx + εyy)/

√
2 at which

the phonon mode goes soft at the K point computed via the
frozen phonon method are 0.201, 0.239, 0.328, and 0.270
for graphene, BN, graphane, and MoS2, respectively. No
finite-wave-vector soft modes preceding the elastic instability
are found for silicene.

To explore the impact of the K-point soft mode on the ideal
strength, in Fig. 1 we compare the stress-strain curve of the
K cell commensurate with a K-point lattice distortion to that
of the primitive cell. At critical values of strain identical or
close to those found via the frozen phonon method, the K-cell
curves shown in red significantly deviate from the primitive
cell curves shown in black in the form of a drop in stress
associated with a transformation to a new structure with a
lower elastic instability. Computing the stress-strain curve
on a finer grid of strain values near this transformation and
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FIG. 1. (Color online) True stress σ vs engineering strain ε for
(a) graphene, (b) BN, (c) graphane, and (d) MoS2 under equibiaxial
strain. Black lines and open circles are for the primitive unit cell; red
lines and solid circles are for the K cell. The strain at which a phonon
mode goes soft at the K point is indicated by a blue line.

tracking the changes in the relaxed ionic positions reveals
that while the phase transition of graphene is continuous,
BN, graphane, and MoS2 each undergo a first-order phase
transition with a sharp discontinuity in the stress and bond
lengths. The first-order nature is most apparent in graphane,
for which the distorted structure becomes the ground state
noticeably before the phonon goes soft. The elastic instability,
corresponding to the peak of the primitive cell curves, occurs at
a strain (stress) of 0.297 (135.0 GPa), 0.311 (118.2 GPa), 0.297
(88.0 GPa), and 0.339 (35.0 GPa) for graphene, BN, graphane,
and MoS2, respectively. The ideal strength of graphene, BN,
and MoS2 are limited by the phonon instabilities since they
correspond to substantially reduced strain (stress) values of
0.206 (125.9 GPa), 0.231 (114.1 GPa), and 0.269 (33.4 GPa),
respectively. In contrast, for graphane the phonon instability
does not precede the elastic instability, so we do not predict
the ideal strength is reduced by the K-point soft mode.

The distorted structures that result from the soft modes
are illustrated in Fig. 2. As in the case of graphene, the soft
mode has a 2D irreducible representation and anharmonicity
determines the minimum-energy direction and hence the
ground-state structure [4]. Graphene, BN, and graphane distort

(a) (b)

(c) (d)

)

FIG. 2. (Color online) Top and side orthographic projections of
the distorted structures for (a) graphene, (b) BN, (c) graphane, and
(d) MoS2 at equibiaxial strains of 0.212, 0.240, 0.328, and 0.270,
respectively. The C, B, N, H, Mo, and S atoms are represented as
brown, green, silver, white, purple, and yellow spheres, respectively.
Dashed lines indicate the undistorted strained lattice.
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FIG. 3. (Color online) K-cell electronic band structures for (a) graphene, (b) BN, (c) graphane, and (d) MoS2 at equibiaxial strains of 0.212,
0.240, 0.328, and 0.270, respectively. Blue lines are for the undistorted structure; red lines are for the partially distorted structure corresponding
to a 50%/50%, 60%/40%, 90%/10%, and 25%/75% linear combination of the undistorted/distorted structures for graphene, BN, graphane,
and MoS2, respectively. The k-point labels �, M, and K correspond to the center, edge midpoint, and corner of the BZ, and the dashed black
line indicates the band gap midpoint for insulators and the Fermi energy for MoS2.

towards Kekulé-like structures consisting of isolated units of
C6 regular hexagons for graphene, B3N3 irregular hexagons
for BN, and buckled C6H6 structures similar to that of the
chair conformation of cyclohexane (without the equatorial
H atoms) for graphane. Such distortions have a beautiful
classical analogy in strained porous elastomeric sheets, whose
failure modes under equibiaxial strain correspond to arrays of
alternating smaller and larger pores [23]. MoS2 undergoes a
distinct structural transformation in which Mo and S atoms
move out of plane and in plane, respectively. In the distorted
structure one of the three Mo sites has six nearly equal Mo-S
nearest-neighbor bond lengths, and two of the three Mo sites
distort (one in the +ẑ direction and one in the −ẑ direction,
where ẑ is the out-of-plane direction) towards trigonal pyra-
midal coordination with three nearest-neighbor S atoms.

To investigate the nature and mechanism of the phonon
instabilities, in Fig. 3 we examine the K-cell electronic band
structures with and without distortion at critical strain, i.e.,
strained at or just beyond the onset of the soft phonon mode.
The particular amounts of distortion, which correspond to a
50%/50%, 60%/40%, 90%/10%, and 25%/75% linear com-
bination of the undistorted/distorted structures for graphene,
BN, graphane, and MoS2, respectively, are chosen to most
clearly illustrate how the soft mode affects the electronic
bands. For graphene [Fig. 3(a)] a gap opens at the � point,
corresponding to the K point of the primitive cell due to
zone folding, consistent with the Peierls instability picture.
However, there are also numerous nonlinear splittings of
degenerate bands at lower energy in graphene as well as
in BN, graphane, and MoS2. The structural distortions tend
to break degeneracies and disentangle groups of bands. In
some cases, such as in MoS2 [Fig. 3(d)], specific bands
substantially shift towards lower energy in parts of the BZ.
BN [Fig. 3(b)] and graphane [Fig. 3(c)] are insulating in the
undistorted state with substantial gaps of 3.4 and 3.3 eV,
respectively. While for BN the distorted structure remains
insulating, for graphane after the onset of the phonon instability
the fully distorted structure (whose bands are not shown) is
semimetallic. For MoS2, a semiconductor in its unstrained
state that becomes semimetallic at an equibiaxial strain of

approximately 0.13 [10,24], the structural distortion does not
open up a gap, as indicated by the multiple bands passing
through the Fermi energy for the partially distorted structure.
Since the soft mode distortion is not accompanied by a band
gap opening for BN, graphane, and MoS2, it is clear that a
2D analogy to the Peierls distortion cannot be the underlying
mechanism in general. Furthermore, the fact that BN and
graphane have substantial band gaps and exhibit very similar
soft modes to that of graphene strongly suggests that for
graphene the opening of a gap at the Dirac point is more
of a consequence than a cause of the phonon instability.

While phonon instabilities suspected to arise from Fermi
surface nesting are traditionally probed by searching for peaks
in the electronic susceptibility, Johannes and Mazin have
extensively shown that for real materials this procedure rarely
has predictive power [25]. As such, in order to elucidate
the mechanism of the phonon instabilities and quantitatively
examine different effects, we take a different approach and
introduce a scheme to partition the total energy in order to
compare the two most electronically disparate cases: graphene
(a semimetal) and BN (an insulator with a large gap). The total
energy expression in DFT can be written as a function of the
Kohn-Sham eigenvalues,

Etot =
∑
i,k

εikθ (εF − εik) − 1

2

∫
ρ(r)ρ(r′)
|r − r′| d3r d3r ′

+Exc[ρ] −
∫

vxc(r)ρ(r)d3r + Enuc, (1)

where εik is the Kohn-Sham eigenvalue of the ith band at
k-point k, εF is the Fermi energy, ρ(r) is the charge density
at position r, Exc and vxc are the exchange-correlation energy
and potential, respectively, and Enuc is the electrostatic energy
of the nuclei. In the spirit of previous work on Fermi surface
nesting [25–27], we partition Etot into an “electronic” band
energy Eelec and an “elastic” energy Eelas defined as follows:

Eelec =
∑
i,k

(εik − εa)θ (εF − εik), (2)

Eelas = Etot − Eelec, (3)
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FIG. 4. (Color online) Change in electronic (red) and elastic
(blue) energies as a function of soft mode distortion amplitude for
the K-cell structures of (a) graphene and (b) BN at equibiaxial strains
(dashed lines) of 0.212 and 0.240, respectively, compared to that at
zero strain (solid lines).

where a reference “anchor” εa from which to measure the
Kohn-Sham eigenvalues is necessary since there is an arbitrary
constant in the treatment of an infinite interacting system
related to individually divergent summations [28]. For the
anchor we choose the average of the highest occupied and
lowest unoccupied eigenvalues, e.g., the Dirac point states
for graphene, which remain stationary to first order for a
noninteracting system. The band structures in Figs. 3(a)–3(c)
are plotted with respect to this anchor choice.

In Fig. 4 we plot Eelec and Eelas as a function of the
soft mode distortion amplitude for unstrained and critically
strained graphene and BN. It should be noted that only the
quadratic regime is relevant in terms of deducing the instability.
For graphene [Fig. 4(a)] and BN [Fig. 4(b)] Eelec is negative,
indicating that changes in band energy drive the soft mode
transitions. Since BN is insulating, this demonstrates that band
energy lowering can be appreciable in such phase transitions
even in the absence of a Fermi surface [25]. For graphene we
performed this partition for all the other modes at the K point

in addition to selected modes at the M point (not shown), and
no other mode had such a large, negative quadratic coefficient.
Every negative electronic term was at least 2–3 times smaller
in magnitude. For both graphene and BN the magnitude of
the band energy lowering decreases with strain, and therefore
strain actually weakens the electronic driving force despite the
fact that it is essential for triggering the transition. The phonon
instability emerges since Eelas decays much more rapidly as a
function of strain. Therefore, the key role of strain is to soften
the elastic term such that the electronic term can dominate and
drive the total energy negative. For both graphene and BN it is
this strain-induced softening of the elastic term that enables the
soft mode. Important future work will be building a physical
understanding of how and why particular modes at the K point
have such a strong electronic term.

IV. CONCLUSIONS

Using DFT calculations we find a soft mode similar to that
of graphene for BN, graphane, and MoS2 that limits the ideal
strength of BN and MoS2 under equibiaxial strain. While for
BN and graphane the soft mode corresponds to a Kekulé-like
distortion similar to that of graphene, MoS2 has a distinct soft
mode in which 2/3 of the Mo sites distort towards trigonal
pyramidal coordination. The structural transitions for BN,
graphane, and MoS2 are not associated with the opening of
a band gap, which reveals that Fermi surface nesting does
not generally play a role in these transitions. Decomposing the
total energy elucidates the complementary roles of a large band
energy lowering that decays slowly with strain and a rapidly
decaying elastic energy penalty in driving phonon instabilities
in monolayer materials.
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