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Ab initio elasticity at finite temperature and stress in ferroelectrics
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Computing the temperature and stress dependence of the elastic constants from first principles in noncubic
materials remains a challenging problem. Here, we circumvent the aforementioned challenge via the generalized
quasiharmonic approximation (gQHA) with the irreducible derivative approach for computing strain-dependent
phonons using finite difference, explicitly including dipole-quadrupole contributions. We showcase the gQHA
in ferroelectric PbTiO3, computing all elastic constants and piezoelectric strain coefficients at finite temperature
and stress. The gQHA overestimates the temperature dependence of the lattice parameters and elastic constant
tensor, demonstrating the need for an explicit treatment of lattice anharmonicity as a function of strain.
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Ferroelectric materials have been widely studied due to
technological importance and interesting physics [1-5]. Many
ferroelectric materials are band insulators, which are typically
well described by density functional theory (DFT) when using
an appropriate exchange-correlation functional. Various stud-
ies of ferroelectrics which parametrize an interacting phonon
Hamiltonian based on DFT and solve the Hamiltonian within
quantum Monte Carlo have produced temperature-dependent
structural phase transitions consistent with experiment [6-9].
However, evaluating piezoelectric properties at finite temper-
atures and stress requires the computation of relevant strain
curvatures of the DFT-based vibrational free energy at finite
temperatures and stress (i.e., the elastic constants). Comput-
ing these elastic constants requires encoding or sampling the
vibrational Hamiltonian as a function of strain, evaluating the
vibrational free energy in some approximation as a function of
strain, and evaluating the second strain derivatives of the free
energy. Each of the aforementioned tasks presents substantial
theoretical and computational challenges.

The standard approximation for computing finite temper-
ature elastic constants is the quasiharmonic approximation
(QHA) [10-13], yielding reasonable agreement with experi-
mental measurements for a variety of cubic systems [14-21].
The computational cost of executing the QHA within DFT is
appreciable [22], as evidenced by the sparsity of temperature-
dependent elastic constant computations for noncubic systems
available in the literature [23-25], and we are not aware of any
published results at finite temperature and anisotropic stress.
The aforementioned limitations can be mitigated by using the
recently developed generalized quasiharmonic approximation
(gQHA) [26], which leverages the irreducible derivative ap-
proach to computing phonons [27,28]. We define the gQHA
as a harmonic truncation of the Born-Oppenheimer potential
at a given strain, where no additional approximations are made
when evaluating the free energy or any other thermal averages.
Here, we showcase the power of the gQHA by studying the
displacive ferroelectric PbTiO3; (space group P4mm) using
DFT, computing the lattice parameters, full elastic constant
tensor, and piezoelectric strain coefficients at finite tempera-
ture and stress. PbTiO3 is an ideal candidate to study within

2469-9950/2024/110(14)/L140101(7)

L140101-1

the gQHA, as the low-symmetry ferroelectric phase persists
to approximately 7 = 760 K [29-31].

DFT calculations were performed using the Vienna ab
initio simulation package (VASP) [32-35] with the projec-
tor augmented-wave (PAW) method [36,37] unless otherwise
stated. The generalized gradient approximation (GGA) re-
vised for solids (PBEsol) [38] and the strongly constrained
and appropriately normed (SCAN) [39] exchange-correlation
functionals were used. Convergence of the strain-dependent
phonons was achieved with a kinetic energy cutoff of 1000 eV
and a I"-centered k-point mesh of 16 x 16 x 16 for the prim-
itive unit cell with corresponding mesh densities being used
for supercells. Details of the PAW potentials, computations of
the phonons as a function of strain, and Fourier interpolation
are provided in Sec. SI of the Supplemental Material (SM)
[40]. The Taylor series expansion of the Born-Oppenheimer
potential is truncated at fifth order in mixed displacement
and strain derivatives unless otherwise stated. The validity
of the fifth-order Taylor series expansion is confirmed up to
T = 350 K by comparing to the thermal expansion resulting
from the evaluation of the second-order irreducible derivatives
on a strain grid and then interpolating (see SM for additional
details [40]). The relaxed crystal structures using the PBEsol
and SCAN functionals are compared with low-temperature
experimental measurements in Table 1. Due to the signifi-
cant overestimation of the ¢ lattice parameter by the SCAN
functional, our computations use the PBEsol functional unless
otherwise stated.

We begin by showcasing the phonons commensurate with
the 4 x 4 x 4 supercell computed at the relaxed lattice pa-
rameters [see Fig. 1(a)], achieving reasonable agreement with
previous computations [42]. The Fourier interpolated phonons
include the dipole-dipole contribution [26,43,44] shown as
the red lines, where the dielectric tensor and Born effective
charges were calculated from density functional perturbation
theory [45,46] within VASP. Along the path from the I" point
to the R point, there are interpolated imaginary phonon fre-
quencies caused by a deficiency in the Fourier interpolation.
Supplementing the interpolation with the dipole-quadrupole
interactions has demonstrated the ability to remove these
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TABLEI Lattice parameters and direct atomic coordinates along
the z direction. Top: Results of DFT relaxation using the PBEsol
and SCAN functionals. Bottom: Results from the gQHA at 7 = 1 K
compared with experimental measurements at 7 = 12 K [41].

Method a c 2(Ti) 2(01)  2(0y3)
PBEsol (DFT) 3.872 4.214 0.539 0.118 0.623
SCAN (DFT) 3.865 4.341 0.545 0.139 0.638
PBEsol (gQHA) 3.891 4.164 0.539 0.112 0.618
Mestric et al. 3.891 4.168 0.542 0.124 0.629

spurious imaginary frequencies from the interpolation [47].
Our Fourier interpolation of the phonons including the dipole-
dipole and the dipole-quadrupole contributions shown as
the blue lines does not contain any spurious imaginary
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FIG. 1. Phonons and specific Gruneisen parameters computed
from DFT (diamonds) and Fourier interpolated (lines), in addition
to the corresponding density of states. (a) Computed phonons which
are Fourier interpolated with dipole-dipole (red) or dipole-dipole and
dipole-quadrupole (blue) contributions. (b), (c) Gruneisen parame-
ters corresponding to strains €40 and g, , respectively.

frequencies. Computation of the dipole-quadrupole contribu-
tion has been implemented analogously to the dipole-dipole
contribution, where dynamical quadrupoles were computed
[48] using density functional theory implemented in the
ABINIT package [49,50] using the PBEsol optimized norm-
conserving Vanderbilt pseudopotential (ONCVPSP) [51].
Our results illustrate that both dipole-dipole and dipole-
quadrupole corrections to the Fourier interpolation can
straightforwardly be utilized in our irreducible derivative ap-
proaches, which are based on the finite-difference method (see
Appendix A of Ref. [26] and SM [40] for more information).

We now present generalized Gruneisen parameters y; q¢ =
—w%[% computed at the relaxed lattice parameters, encap-
sulating the first-order strain dependence of the phonons [see
Figs. 1(b) and 1(c)]. Computation of the full elastic constant
tensor within the gQHA requires the strain dependence of
the phonons for all strains, whereas the thermal expansion
only requires the strain dependence of phonons for strains that
do not break point group symmetry (i.e., identity strains). In
PbTiO3, the identity strains can be defined as € AR = %5 (€xx +

€yy) and €4: = €, and the €4; Gruneisen parameter is shown
in Fig. 1(b). Integration of the density of states yields averaged
Gruneisen parameters of )7Alu = 1.78 and jys; = 0.28. The

Gruneisen parameter of the nonidentity strain €g, = \/Li (€xx —

€yy) is shown in Fig. 1(c). Symmetry selection rules and first-
order perturbation theory require nonidentity strain Gruneisen
parameters to be zero along various directions in reciprocal
space [26].

Having computed the strain dependence of the phonons,
we apply the gQHA to compute the a and c lattice parameters
at finite temperature and stress. The lattice parameters at a
given temperature 7 and stress o are computed by evaluating
the Biot strain map €(7, o), where definitions and notation
are equivalent to Ref. [26] [see Egs. (21)—(26)]. The crystal
structure predicted at 7 = 1 K by the gQHA quantitatively
differs from the values obtained from DFT relaxations due to
zero point motion, and are compared with experimental mea-
surements at 7 = 12 K (see Table I). The predicted shift in
lattice parameters due to zero-point motion yields remarkable
agreement with the values obtained from experiment, how-
ever, there are small discrepancies in the predicted basis atom
positions for the oxygen atoms. It should be noted that within
the gQHA, the Born-Oppenheimer potential is parametrized
under the condition where the basis atom positions are always
at a minimum energy. Furthermore, the Born-Oppenheimer
potential is truncated at second order at a given strain, and
therefore the basis atom positions are purely determined by
the strain which results from minimizing the free energy.
Therefore, the gQHA yields the same result for basis atom
positions as QHA methods which employ the zero-static-
internal-stress approximation [52]. The calculation of basis
atom positions can be improved by going beyond the QHA
using the anharmonic terms (e.g., see Refs. [13,53-55]).

We now compare the computed temperature dependence of
the lattice parameters with experimental measurements at var-
ious temperatures under unstressed conditions [see Figs. 2(a)
and 2(b)]. The most notable difference among the experiments
is a relative shift in the a and c lattice parameters, presumably
due to imperfections in the measured crystal samples. The
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FIG. 2. The (a) a and (b) c lattice parameters as a function of
temperature computed with the gQHA (lines) under unstressed (blue)
and stressed (red) conditions compared with experimental measure-
ments (diamonds) [41,56,59,60]. The solid green points correspond
to samples with 3% Cd, while corresponding open points are extrap-
olated to 0% Cd. (c) The c lattice parameter as a function of pressure
computed with the gQHA at various temperatures compared with
experimental measurements [61].

measurements in Ref. [56] were conducted on samples with a
composition including 3% and 6% Cd, and we use the room-
temperature measurements to linearly extrapolate to 0% Cd
by shifting all measured a and c lattice parameters by 0.005
and —0.007 A, respectively (shown as open markers). The
gQHA overestimates the change in the lattice parameters with
temperature, which has been observed in previous literature
studying PbTiO; [42] and in various other materials [57,58].
Given that the gQHA allows for anisotropic stress, it is inter-
esting to apply a compressive stress of ou0 = —0.31 GPa and
a tensile stress of o4; = 0.055 GPa. The applied stress shifts
the a and c lattice parameters with only minor changes to the
temperature dependence.

We present the change in the ¢ lattice parameter with
respect to pressure at finite temperatures in the range from
P =0 GPa to P =3 GPa, and compare with experimental
measurements at room temperature [see Fig. 2(c)]. The dashed

black line is computed at 7 = 0 K within the classical QHA,
whereby the T = 0 K classical result will be equivalent to the
lattice parameter computed in a DFT relaxation at constant
pressure, presuming that the strain dependence of the elastic
energy is faithfully parametrized. The change in the lattice
parameter with pressure at finite temperature is shown at tem-
peratures of T =1 K and T = 300 K. The computed lattice
parameter at zero pressure and room temperature underesti-
mates the measured lattice parameter. There are only small
differences in the pressure dependence of the lattice parameter
computed at 7 = 1 Kand 7 = 300 K, and the gQHA overes-
timates the pressure dependence of the lattice parameter as
compared to the experimental measurements [61]. However,
it is interesting to note that quantum fluctuations suppress the
decrease of the classical gQHA result with pressure, pushing
the result towards the experimental measurements.

Having computed the lattice parameters, we now discuss
the strain curvature of the free energy at finite temperature
and stress. There are three experimentally relevant quanti-
ties related to the free-energy curvature at finite stress [62]:
the free-energy curvature C;;, the elastic wave propagation
coefficient S;;, and the stress-strain coefficient B;;. Addition-
ally, elastic constants in ferroelectrics can be measured under
boundary conditions of constant electric field E or constant
electric displacement field D. The relation between the two
boundary conditions is given by [63]

Cg(T’ 0’) :CE(T, 0) + Z(eai(Tv 6)
af

x epi(T, O[T, ) ap), (1)

where %5 is the relaxed-ion dielectric tensor at fixed strain
and e,; is the relaxed-ion piezoelectric stress coefficient
[63-66] (see Sec. SI of SM for additional details [40]).

We compute the full elastic constant tensor at finite tem-
perature and stress and compare with experimental values
measured under unstressed conditions at room temperature
and beyond [67-69] (see Fig. 3). The elastic constants which
were only measured at a single temperature are compared to
the gQHA in Sec. SI of the SM [40]. There is reasonable
agreement between the two sets of experimental values at
room temperature, where the largest disagreement is a 4%
difference in the measured CZ, values. At room temperature,
the gQHA with PBEsol yields good agreement for CF; and
CE,, however C% and CL, are overestimated and Cgg is un-
derestimated. The change in the predicted elastic constants
with temperature is much greater than the change observed
in experiment, likely due to an overestimation of the thermal
expansion with temperature (see Fig. 2) and due to the neglect
of explicit phonon interactions within the QHA [57,58]. The
change in the constant D-field elastic constants with temper-
ature is significantly greater than that of the corresponding
constant E-field cases, and Eq. (1) dictates that the origin
is the temperature dependence of e;; and éf}o’s, which de-
pend on the strain-dependent I"-point dynamical matrix. The
strong temperature dependence of the constant D-field elastic
constants is in stark disagreement with experiment, likely
indicating a deficiency of the gQHA.

We proceed by computing the piezoelectric strain coeffi-
cients as a function of temperature and stress, and compare
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FIG. 3. (a) Selected axial and (b) shear elastic constants under
constant E fields or D fields computed with the gQHA (lines) under
unstressed (solid) and stressed (dashed) conditions compared with
previous experimental measurements (markers) [68,69]. See SM for
additional elastic constants [40].

with existing experimental values measured under unstressed
conditions (see Fig. 4 and SM [40]). The piezoelectric strain
coefficients d;; are constructed using the elastic constant ten-
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FIG. 4. Piezoelectric strain coefficient —d3; computed with
g¢QHA (lines) under unstressed (blue) and stressed (red) condi-
tions compared with existing experimental measurements (circles)
[68,69,71]. For additional piezoelectric strain coefficients, see SM
[40].

sor and the piezoelectric stress coefficients [63,70],

di(T, 0) = Y (1B (T, 0)] ijea;(T,0),  (2)
J

where f?Fj denotes the stress-strain coefficient under a constant
electric field. The graphs of d33 and d,s are shown in the SM
[40] as only room-temperature measurements have been per-
formed for these coefficients. The experimentally measured
values of the piezoelectric strain coefficients [68,69,71] show
quantitative inconsistency, as the values vary as much as 20%
for d3; at room temperature. Our quasiharmonic prediction
of dj) overestimates the experimental measurements, and the
discrepancy can be explained by differences in the Bfl[] A and
BE, elastic constants. This can be verified at 7 = 300 K by
taking the experimental values of e,; and B;; from Ref. [68]
and replacing the values of BZDAT and Bf, with our com-

puted values of 108.1 and 56.0 GPa which yields d3; = —39.9
pC/N, in good agreement with our pure gQHA result (addi-
tional replacements did not have an appreciable effect). The
temperature dependence of d3; within the gQHA is in good
agreement with experimental measurements up to room tem-
perature [71], though the agreement is likely fortuitous given
the discrepancies in the temperature dependence of the elastic
constants, thermal expansion, and the relaxed-ion piezoelec-
tric stress coefficients. Therefore, the anomalous temperature
dependence of d3; beyond room temperature is not entirely
unanticipated.

In summary, we have demonstrated the application of
the gQHA to a noncubic crystal, ferroelectric PbTiOs3,
under conditions of finite temperature and stress. The ir-
reducible derivative approach to computing phonons from
finite difference yields the strain-dependent phonons, where
dipole-quadrupole effects are incorporated in the Fourier in-
terpolation. The thermal expansion, elastic constants, and
piezoelectric strain coefficients are computed at finite tem-
perature and stress. The temperature dependence of the
thermal expansion and elastic constants at zero stress are over
estimated by the gQHA, illustrating the need to solve the vi-
brational Hamiltonian using a strain-dependent theory which
explicitly accounts for phonon interactions. Our observed lim-
itations of the gQHA are not unexpected, as discrepancies of
the QHA are well known in various anharmonic materials
[57,58]. Advances in the computation of finite-temperature
vibrational properties from DFT using more sophisticated
approximations than the QHA have been achieved [72-77],
however, we are not aware of the application of any of these
theories to the computation of the elastic constant tensor
at finite temperature. These more advanced theories can be
straightforwardly applied as a function of strain to compute
thermal expansion and elastic constants at finite temperature
and stress using the general formalism outlined previously
[26], which will be the subject of future work.
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