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The recently developed variational discrete action theory (VDAT) provides a systematic variational approach
to the ground state of the quantum many-body problem, where the quality of the solution is controlled by an
integer N , and increasing N monotonically approaches the exact solution. VDAT can be exactly evaluated in
the d = ∞ multiorbital Hubbard model using the self-consistent canonical discrete action theory (SCDA), which
requires a self-consistency condition for the integer time Green’s functions. Previous work demonstrates that
N = 3 accurately captures multiorbital Mott/Hund physics at a cost similar to the Gutzwiller approximation.
Here we employ a gauge constraint to automatically satisfy the self-consistency condition of the SCDA at
N = 3, yielding an even more efficient algorithm with enhanced numerical stability. We derive closed form
expressions of the gauge constrained algorithm for the multiorbital Hubbard model with general density-density
interactions, allowing VDAT at N = 3 to be straightforwardly applied to the seven-orbital Hubbard model. We
present results and a performance analysis using N = 2 and N = 3 for the SU(2Norb) Hubbard model in d = ∞
with Norb = 2–8, and compare to numerically exact dynamical mean-field theory solutions where available. The
developments in this work will greatly facilitate the application of VDAT at N = 3 to strongly correlated electron
materials.
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I. INTRODUCTION

The recently developed variational discrete action theory
(VDAT) [1,2] has emerged as a powerful tool to study the
ground state of the multiorbital Hubbard model [3], which
can be considered as a minimal model for a wide class of
strongly correlated electron materials [4,5]. VDAT consists of
two central components: the sequential product density matrix
(SPD) ansatz and the discrete action theory to evaluate observ-
ables under the SPD. The accuracy of the SPD is controlled
by an integer N , and the SPD monotonically approaches the
exact solution for increasing N . In the context of the Hubbard
model, the SPD recovers most well-known variational wave
functions [1]: N = 1 recovers the Hartree-Fock wave func-
tion, N = 2 recovers the Gutzwiller wave function [6–8], and
N = 3 recovers the Gutzwiller-Baeriswyl [9] and Baeriswyl-
Gutzwiller wave functions [10]. The discrete action theory can
be viewed as an integer time generalization of the imaginary
time path integral, yielding an integer time generalization of
the Green’s function and Dyson equation [1]. For d = ∞,
the SPD can be exactly evaluated using the self-consistent
canonical discrete action (SCDA) [1,2]. VDAT within the
SCDA offers a paradigm shift away from the dynamical mean-
field theory (DMFT) [5,11,12], allowing the exact solution
of the ground-state properties of the d = ∞ Hubbard model
to be systematically approached within the wave function
paradigm. The computational cost of VDAT grows with N ,
at an exponential scaling for an exact evaluation and a poly-
nomial scaling for a numerical evaluation using Monte Carlo,
so rapid convergence with N is important if VDAT is to be
a practical alternative to DMFT. VDAT using N = 2, 3, 4 has

been applied to the single-orbital Anderson impurity model on
a ring [2], the d = ∞ single-orbital Hubbard model [2], and
the d = ∞ two-orbital Hubbard model [3], and in all cases
N = 3 yields accurate results as compared to the numerically
exact solutions. This success is particularly nontrivial in the
two-orbital problem, where complex local interactions includ-
ing the Hubbard U , Hund J , and crystal field � were studied
over all parameter space. Therefore, VDAT within the SCDA
at N = 3 provides a minimal and accurate description of the
two-orbital Hubbard model, but with a computational cost
that is comparable to N = 2, which recovers the Gutzwiller
approximation [8] (GA) and slave boson mean-field theories
[13–15]. The fact that VDAT within the SCDA at N = 3
resolves all the limitations of the Gutzwiller approximation
and the slave boson mean-field theories without substantially
increasing the computational cost motivates a deeper under-
standing of how the SCDA works.

The SCDA provides a route for exactly evaluating the
SPD in d = ∞, and the SCDA can be viewed as the integer
time analog of DMFT [1,3]. While DMFT maps the Hubbard
model to a self-consistently determined Anderson impurity
model, the SCDA maps the SPD to a self-consistently deter-
mined canonical discrete action (CDA), parametrized by the
corresponding noninteracting integer time Green’s function G,
which implicitly depends on the variational parameters of the
SPD. While the DMFT self-consistency condition only needs
to be executed once, the SCDA self-consistency condition
must be executed for every choice of variational parame-
ters during the minimization. Previously, we proposed an
approach to mitigate this issue by simultaneously minimizing
the variational parameters and updating G, and demonstrated
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it to be efficient for the two-band Hubbard model [3]. How-
ever, for some regions of parameter space, such as in the
large polarization regime, a very small step size is needed
to maintain numerical stability. Such problems are partially
due to inaccuracies of G within the iteration process, given
that G is only highly precise when the fixed point is reached.
Therefore, it would be advantageous if the self-consistency
condition of the SCDA could be automatically satisfied.

Given that N = 2 recovers the GA, it is interesting to recall
how the GA automatically satisfies the SCDA self-consistency
condition. As previously demonstrated [1], the GA has a pre-
scribed form of G, which is fully determined by imposing that
the noninteracting and interacting local single-particle density
matrices are identical, which we refer to as the Gutzwiller
gauge. While the SCDA at N = 2 can evaluate an SPD with
arbitrary variational parameters, the GA is only valid when
the SPD satisfies the Gutzwiller gauge. Therefore, the GA
is a special case of the SCDA at N = 2, but the Gutzwiller
gauge does not limit the variational power of the SPD due
to the gauge freedom of the SPD [3]. In summary, the GA
provides an important lesson for numerically simplifying the
SCDA at N = 2 by exploiting the gauge freedom of the SPD,
converting the problem of solving for G into a constraint
on the variational parameters of the SPD. In this paper, we
demonstrate that the lessons of the GA can be generalized
to N = 3, which quantitatively captures the Mott and Hund
physics of the multiorbital Hubbard model [3].

In order to demonstrate the power of the gauge con-
strained implementation of the SCDA at N = 3, we study
the SU(2Norb) Hubbard model in d = ∞ with Norb = 2–8.
Our successful execution of these calculations demonstrates
the viability of applying VDAT at N = 3 to crystals bearing
d or f electrons. Moreover, the SU(2Norb) Hubbard model
is interesting in its own right, given that experiments on ul-
tracold atoms in an optical lattice can realize the SU(2Norb)
Hubbard model [16–21]. Therefore, VDAT should serve as a
reliable tool for understanding and interpreting such experi-
mental measurements.

The structure of this paper is as follows. Section II presents
the gauge constrained algorithm of the SCDA at N = 3,
with Sec. II A providing a high-level overview of the entire
algorithm, including all key equations, while the remain-
ing sections provide detailed derivations. Section III presents
results for the SU(2Norb) Hubbard model in d = ∞ with
Norb = 2–8.

II. GAUGE CONSTRAINED ALGORITHM AT N = 3

A. Overview

The goal of this section is to provide an overview of the
gauge constrained algorithm for the SCDA at N = 3, and
Secs. II B, II C, and II D will derive all details of the pro-
cedure. We begin by highlighting how the SCDA exactly
evaluates the SPD in d = ∞ [1–3]. Consider a fermionic
lattice model having a Hamiltonian

Ĥ = K̂ + Ĥloc =
∑
kασ

εkασ n̂kασ +
∑

i

Ĥloc;i, (1)

where i = 1, . . . , Nsite enumerates over the lattice sites, k =
1, . . . , Nsite enumerates over the k points, α = 1, . . . , Norb

enumerates over the orbitals, and σ enumerates over spin. The
G-type SPD for N = 3 can be motivated from the following
variational wave function:

exp

(∑
kασ

γkασ n̂kασ

)∏
i

P̂i(u)|�0〉, (2)

where {γkασ } is the set of noninteracting variational parame-
ters, u = {ui�} is the set of interacting variational parameters,
P̂i(u) = ∑

� ui�P̂i� , and |�0〉 is a noninteracting variational
wave function; and both {γkασ } and {ui�} are real numbers.
The index � enumerates a set of many-body operators {P̂i�}
local to site i. The {P̂i�} used for an Ĥloc;i containing only
density-density type interactions is given in Eq. (31), while
the general case is given in Eq. (B2). It will be important to
rewrite the above wave function as a density matrix, yielding
the G-type SPD [1] for N = 3

	̂ = P̂1P̂2P̂3 = (K̂1P̂1)(K̂2P̂1)(K̂1), (3)

where K̂1 = exp(
∑

kασ γkασ n̂kασ ), P̂1 = ∏
i P̂i(u), and K̂2 =

|�0〉〈�0|. Here we have chosen K̂1 to be diagonal in kασ ,
while the most general case is addressed in Ref. [3].

Evaluating expectation values under the SPD is highly
nontrivial, and we have developed the discrete action theory
[1] to formalize the problem in a manner, which is amenable
to systematic approximations. A key idea of the discrete action
theory is the equivalence relation between an integer time
correlation function and a corresponding expectation value in
the compound space. An operator operator Ô in the original
space is promoted to the compound space with a given integer
time index τ , denoted as Ô

(τ )
[1]. For the total energy with

N = 3, this equivalence is given as

〈Ĥ〉	̂ = 〈
Ĥ

(N )〉
	̂
, (4)

where 	̂ = 	̂
0

∏
i P̂i is the discrete action of the SPD, 	̂

0
=

Q̂K̂
(1)
1 K̂

(2)
2 K̂

(3)
1 is the noninteracting discrete action, Q̂ is the

integer time translation operator [1,3], and the interacting
projector for site i is

P̂i = P̂
(1)
i (u)P̂

(2)
i (u) =

∑
��′

ui�ui�′ P̂
(1)
i� P̂

(2)
i�′ . (5)

An important previous result is that the expectation value
in the compound space can be exactly evaluated for d =
∞ using the self-consistent canonical discrete action theory
(SCDA) [1,2].

Given the common scenario of translation symmetry, the
SCDA can be presented in terms of two auxiliary effective
discrete actions parameterized by 2NorbN × 2NorbN matrices
Sloc and G, given as〈

Ĥ
(N )〉

	̂
= 〈

K̂
(N )〉

ρ̂
K

+ Nsite
〈
Ĥ

(N )
loc;i

〉
ρ̂

loc;i

, (6)

ρ̂
K

= 	̂
0

exp

(
−

∑
i

ln ST
loc · n̂i

)
, (7)

ρ̂
loc;i

= exp(− ln(G−1 − 1)T · n̂i )P̂i, (8)

where [n̂i]αστ,α′σ ′τ ′ = â†(τ )
iασ â(τ ′ )

iα′σ ′ , the dot product operation is
defined as a · b̂ ≡ ∑

��′[a]��′[b̂]��′ , the discrete action ρ̂
K

is
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used to compute all single-particle integer time Green’s func-
tions, and ρ̂

loc;i
is used to compute all N-particle integer time

Green’s functions local to site i. The G and Sloc must satisfy
the following two self-consistency conditions:(

g−1
loc − 1

) = (G−1 − 1)Sloc, (9)

gloc = g′
loc, (10)

where gloc = 〈n̂i〉ρ̂ loc;i
and g′

loc = 〈n̂i〉ρ̂K
.

One challenge posed by the SCDA is that the self-
consistency condition must be satisfied for a given choice of
variational parameters, which makes the minimization over
the variational parameters nontrivial. An efficient algorithm
for VDAT within the SCDA was proposed for the multiorbital
Hubbard model for general N , referred to as the decoupled
minimization algorithm, and implemented in the two-orbital
Hubbard model up to N = 4 [3]. The decoupled minimization
algorithm begins with an initial choice of variational param-
eters {γkασ }, u and an initial choice for G, which determines
the discrete action ρ̂

loc;i
[Eq. (8)], which yields gloc. Using the

discrete Dyson equation [Eq. (9)], Sloc can be computed from
G and gloc. Then the discrete action ρ̂

K
[Eq. (6)] can be used to

compute g′
loc. Using gloc = g′

loc in the discrete Dyson equation,
a new G can be obtained. During this self-consistency cycle,
relevant first-order derivatives with regard to {γkασ }, u, and G
can be computed and two effective models can be constructed
to update {γkασ } and u. This entire procedure is iterated until
{γkασ }, u, and G are self-consistent. In a given iteration before
reaching self-consistency, the energy and its gradients contain
errors due to a deviation from the SCDA self-consistency
condition, which can yield slow convergence in some regions
of parameter space. Automatically satisfying the SCDA would
yield a dramatic advantage when minimizing over the varia-
tional parameters.

In previous work [1], we demonstrated that the gauge
freedom of the SPD can be used to automatically satisfy the
SCDA self-consistency condition at N = 2, which recovers
the Gutzwiller approximation, and here we extend this line of
reasoning to N = 3. For simplicity, we use a restricted form
of the SPD, where the kinetic projector is diagonal in k space
and P̂i(u) does not introduce off-diagonal terms at the level
of the single-particle density matrix. Therefore, G, Sloc, and
gloc all have the form [gloc]αστ,α′σ ′τ ′ = δαα′δσσ ′[gloc]αστ,αστ ′ ,
and the integer time Green’s functions of each spin orbital are
described by a 3 × 3 matrix. We begin by partitioning a local
integer time 3 × 3 matrix Mασ for a given spin orbital into
submatrices as:

Mασ =
⎛
⎝ [Mασ ]11 [Mασ ]12 [Mασ ]13

[Mασ ]21 [Mασ ]22 [Mασ ]23

[Mασ ]31 [Mασ ]32 [Mασ ]33

⎞
⎠ (11)

=
(

Mασ ;A Mασ ;B

Mασ ;C Mασ ;D

)
, (12)

where M can be G, Sloc, gloc, and g′
loc. The main idea is to

satisfy the self-consistency condition gloc = g′
loc in two stages:

first for the A block and then for the B, C, and D blocks.
We proceed by outlining the logic and key equations of

the first stage, which is treated in detail in Sec. II B and II C.

The first stage begins by considering Gασ ;A, a 2 × 2 matrix,
which can be parametrized in terms of the single variable
Gασ ;12 using the gauge freedom of the SPD, and Gασ ;12 should
now be regarded as an independent variational parameter. The
gloc;A and Sloc can be determined as a function of the sets
G12 = {Gασ ;12} and u = {ui�}, though we suppress the func-
tion arguments G12 and u for brevity. The local density is also
a function of G12 and u, defined as nασ (G12, u) = [gloc;ασ ]22.
For a given ασ , the Sloc;ασ can be parametrized using Sασ ;11

and Sασ ;12, and we can explicitly reparametrize the kinetic
variational parameters as nkασ ;0 and nkασ , where nkασ ;0 = 0, 1
is the single-particle density matrix of K̂2 and nkασ is the
single-particle density matrix of the SPD. It will be proven
that nkασ ;0 determines the Fermi surface of both the interacting
and noninteracting SPD, and therefore it will be useful to
define two regions of momentum space, denoted as < or >,
where < denotes the set of k points with nkασ ;0 = 1 and > in-
dicates nkασ ;0 = 0; and we assume

∫
dk = 1. For each region

X ∈ {<,>} of a given spin orbital ασ , it will be useful to
define the charge transfer �Xασ and charge fluctuation AXασ

as

�Xασ =
∫

X
dk(nkασ ;0 − nkασ ), (13)

AXασ =
∫

X
dk

√
nkασ (1 − nkασ ), (14)

which measure the influence of the local interaction on the
given spin orbital. Given that g′

loc,ασ ;A is determined by Sασ ;11,
Sασ ;12, {nkασ }, and {nkασ ;0}, the self-consistency condition
gloc;A = g′

loc;A becomes three linear constraints on nkασ ;0 and
nkασ , given as ∫

nkασ ;0dk = nασ (G12, u), (15)∫
nkασ dk = nασ (G12, u), (16)

�<ασ = �ασ (G12, u), (17)

where

nασ (G12, u) ≡ [gloc;ασ ]22, (18)

�ασ (G12, u) ≡ Sασ ;12

Sασ ;11
[gloc;ασ ]12. (19)

It should be noticed that the three constraints imply �<ασ =
−�>ασ . The three constraints have a clear interpretation.
Equation (15) indicates that the local density of the noninter-
acting reference system K̂2 is constrained to [gloc;ασ ]22. Using
Eq. (16), we see that [gloc;ασ ]22 = [gloc;ασ ]33, dictating that
the Fermi volume is equal to the local density obtained from
the SPD. The result of these two constraints can be viewed
as the wave function analog of the Luttinger theorem [22].
The third constraint, Eq. (17), reveals how the local interac-
tion influences the density distribution. When the interacting
projector is close to the identity, Sασ ;12 approaches zero while
the Sασ ;11 and [gloc;ασ ]12 approach a finite value, dictating that
�ασ (G12, u) approaches zero and therefore nkασ approaches
nkασ ;0. Alternatively, when the interacting projector deviates
from the identity, �ασ (G12, u) increases and imposes a devi-
ation of nkασ away from nkασ ;0. In summary, the first stage
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enforces self-consistency for the A block, determining the
kinetic energy.

In the second stage, g′
loc,ασ is fully determined by Sασ ;11,

Sασ ;12, nασ (G12, u), �ασ (G12, u), A<ασ , and A>ασ , therefore
gloc = g′

loc can determine G on the B, C, and D blocks, which
is derived in Sec. II D. In summary, the self-consistency has
been automatically satisfied and the local energy determined.

In conclusion, we have an explicit functional form for the
total energy of the SPD parametrized by G12, u, and nkασ ,
given as ∑

ασ

∫
dkεkασ nkασ + Eloc(G12, u,A), (20)

where A = {A<ασ ,A>ασ } and nkασ is constrained by
Eqs. (16) and (17) and the volume of Fermi sea is con-
strained by Eq. (15). The total energy has been expressed as
a functional of G12, u, {nkασ }, and {nkασ ;0}. This algorithm
can be viewed as a nonlinear reparametrization of the original
variational parameters |�0〉, u, and {γkασ }, where {nkασ ;0} is
a reparametrization of |�0〉, {nkασ } is a reparametrization of
part of {γkασ }, and G12 can be viewed as a set of variational
parameters which reparametrizes the remaining part of {γkασ }
through condition (17).

It should be noted that {nkασ } only influences the local in-
teraction energy through A, and is constrained by nασ (G12, u)
and �ασ (G12, u), and therefore to find an optimized nkασ

in the region X ∈ {<,>} of spin orbital ασ , two Lagrange
multipliers aXασ and bXασ can be introduced

FXασ =
∫

X
dk(εkασ nkασ − aXασ nkασ

− bXασ

√
nkασ (1 − nkασ )), (21)

and we can solve for nkασ from δFXασ

δnkασ
|k∈X = 0, resulting in

nkασ

∣∣
k∈X = 1

2

(
1 + aXασ − εkασ√

(aXασ − εkασ )2 + b2
Xασ

)
. (22)

Therefore, the true independent variational parameters for the
algorithm are G12, u, and b = {bXασ }, given that a = {aXασ }
can be determined as a function of G12, u, and b through
Eqs. (16) and (17). Finally, the ground-state energy can be
determined as

E = min
G12,u,b

(∫
dkεkασ nkασ (a, b) + Eloc(G12, u, b)

)
, (23)

where the functional dependencies for nkασ (a, b) are defined
in Eq. (22) and Eloc(G12, u, b) is detailed in the remaining
sections. In this work, we used the Nelder-Mead algorithm
[23] to perform the minimization in Eq. (23), which is a
gradient-free algorithm. In some cases, it may be preferable to
solve a Hamiltonian with fixed density nασ , and this procedure
is outlined in Appendix A.

It is useful to give some practical guidelines for the effi-
ciency of the gauge constrained algorithm, which can roughly
be broken down into two factors. First, there is the cost of eval-
uating expectation values under ρ̂

loc;i
[i.e., Eq. (29)], which

will scale exponentially with the number of spin orbitals.
Second, there is the number of independent variational param-
eters, which scales exponentially in the absence of symmetry.

The first factor is roughly independent of the symmetry of the
Hamiltonian Ĥ , which is being solved, while the second factor
strongly depends on the symmetry. However, it is always
possible to restrict the number of variational parameters in
order to control the computational cost of the second factor,
maintaining an upper bound for the total energy compared
to the full variational minimization. Therefore, there are nu-
merous avenues for engineering a minimal parametrization
of the space of variational parameters. In the present paper,
we study the SU(2Norb) Hubbard model, where the high local
symmetry results in a linear scaling for the number of vari-
ational parameters, and therefore the first factor completely
dominates the computational cost.

B. Evaluating observables within the local A block

Here we will elucidate why the block structure introduced
in Eq. (12) is the starting point for the gauge constrained
algorithm. We begin by explaining why Gασ ;A is the only
block that needs to be considered when determining Sloc.
Given that P̂ only acts on the first and second integer time
step, Sloc only has nontrivial elements on the A block, which
are determined by Gασ ;A and u (see Sec. V B in Ref. [1] for
further background). Therefore, only the form of Gασ ;A needs
to be specified to initiate the algorithm.

We previously demonstrated that the gauge freedom of the
SPD allows the following simple form [3]:

Gασ ;A =
(

1
2 Gασ ;12

−Gασ ;12
1
2

)
, (24)

where Gασ ;ττ ′ = [Gασ ]ττ ′ and Gασ ;12 ∈ [0, 1/2]. Since the
Gασ ;A is completely determined, any observables within the
local A block can now be explicitly determined. For any oper-
ator Ô local to site i, the expectation value under ρ̂

loc;i
can be

rewritten in terms of expectations values of the noninteracting
part of ρ̂

loc;i
as

〈Ô〉ρ̂
loc;i

=
〈P̂iÔ〉ρ̂

loc;i,0

〈P̂i〉ρ̂ loc;i,0

, (25)

where

ρ̂
loc;i,0

≡ exp(− ln(G−1 − 1)T · n̂i ), (26)

Using the form of P̂i in Eq. (5), we have

〈P̂iÔ〉ρ̂
loc;i,0

= uT (Ô)uu, (27)

where u = (ui1, . . . , uiN�
)T is a N�-element real vector, N� is

the number of local projectors, and (Ô)u is an N� × N� matrix
with elements

[(Ô)u]��′ = 〈
P̂

(1)
i� P̂

(2)
i�′ Ô

〉
ρ̂

loc;i,0

. (28)

It should be emphasized that the subscript in (Ô)u solely
indicates that this matrix and the vector u are in the same rep-
resentation, and the elements of (Ô)u defined in Eq. (28) are
not dependent on the values of ui�; a different representation,
which is useful for constraining the density is presented in
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Appendix A. The expectation value of Ô under ρ̂
loc;i

is given
as

〈Ô〉ρ̂
loc;i

= uT (Ô)uu

uT (1̂)uu
. (29)

For example, the local integer time Green’s function can be
computed as

[gloc;ασ ]ττ ′ = uT
(
â†(τ )

ασ â(τ ′ )
ασ

)
uu

uT (1̂)uu
. (30)

In the following, we present key formulas to evaluate Eq. (28).
Given that we have restricted the SPD to be diagonal, the local
projectors can be chosen as [3]

P̂i� =
∏
ασ

(δ�ασ ,0(1 − n̂ασ ) + δ�ασ ,1n̂ασ ), (31)

where �ασ ∈ {0, 1} and are determined from the binary rela-
tion (�1↑�1↓ . . . �Norb↑�Norb↓)2 = � − 1. The matrix elements
of (1̂)u are given as

[(1̂)u]��′ =
∏
ασ

pασ (�ασ , �′
ασ ), (32)

pασ (�ασ , �′
ασ ) = 1

4
+ (−1)�ασ +�′

ασG2
ασ ;12. (33)

Single-particle operators are evaluated as[(
â†(τ )

ασ â(τ ′ )
ασ

)
u

]
��′ = gττ ′

ασ (�ασ , �′
ασ )

×
∏

α′σ ′ 
=ασ

pα′σ ′ (�α′σ ′ , �′
α′σ ′ ), (34)

where

gττ ′
ασ (�ασ , �′

ασ ) = pασ (�ασ , �′
ασ )Gασ ;ττ ′ + (−1)�ασ +�′

ασ

× ((
1
2 (−1)�

′
ασ −1Gασ ;1τ ′

−Gασ ;12Gασ ;2τ ′
)
(δ1,τ − Gασ ;τ1)

+ (
1
2 (−1)�ασ −1Gασ ;2τ ′

+Gασ ;12Gασ ;1τ ′
)
(δ2,τ − Gασ ;τ2)

)
. (35)

Any two-particle correlation function of the below form are
given as [(

â†(τ1 )
α1σ1

â
(τ ′

1 )
α1σ1 â†(τ2 )

α2σ2
â

(τ ′
2 )

α2σ2

)
u

]
��′

= g
τ1τ

′
1

α1σ1

(
�α1σ1 , �

′
α1σ1

)
g
τ2τ

′
2

α2σ2

(
�α2σ2 , �

′
α2σ2

)
×

∏
α′σ ′ 
=α1σ1,α2σ2

pα′σ ′ (�α′σ ′ , �′
α′σ ′ ), (36)

where α1σ1 
= α2σ2. In Appendix B, we outline how to treat
a general interacting projector. In summary, we have provided
explicit formulas for evaluating local quantities up to the two-
particle level, which is sufficient to execute the algorithm. It
should be emphasized that these expressions for local observ-
ables are valid outside of the A block, but require complete
knowledge of G [e.g., see Eq. (35)].

Normally, evaluating expectation values under ρ̂
loc;i

[i.e.,
Eq. (29)] will be the rate limiting factor in the SCDA, and
given that N� scales exponentially with the number of spin or-
bitals, the overall computational cost will scale exponentially.

There are two possible routes to mitigate this exponential
scaling. First, one could reduce the number of projectors,
though this must be done carefully as it will limit the varia-
tional freedom. Second, one may use Monte Carlo to evaluate
Eq. (29).

We now proceed to evaluate Sloc,ασ . Given the choice of
Gασ ;A and using Eqs. (32) and (34), we find that gασ ;A has the
following form:

gloc,ασ ;A =
(

nασ gασ ;12

−gασ ;12 nασ

)
, (37)

where nασ and gασ ;12 are functions of G12 and u. Given that
the local interacting projector only acts on the A block, the
discrete Dyson equation simplifies to(

g−1
loc,ασ ;A − 1

) = (
G−1

ασ ;A − 1
)
Sloc,ασ ;A, (38)

which yields an integer time self-energy of the form

Sloc,ασ =
⎛
⎝ Sασ ;11 Sασ ;12 0

−Sασ ;12 Sασ ;11 0
0 0 1

⎞
⎠, (39)

where

Sασ ;11 = 1(
4G2

ασ,12 + 1
)(

g2
ασ,12 + n2

ασ

)
× ( − g2

ασ,12 + 4gασ,12Gασ,12 − n2
ασ + nασ

+ 4G2
ασ,12

(
g2

ασ,12 + (nασ − 1)nασ

))
, (40)

Sασ ;12 = 1(
4G2

ασ,12 + 1
)(

g2
ασ,12 + n2

ασ

)
× (gασ,12(4Gασ,12(Gασ,12 − gασ,12) − 1)

− 4(nασ − 1)nασGασ,12). (41)

In summary, Eqs. (40) and (41) express the local integer time
self-energy as a function of G12 and u.

C. Parametrization of the integer time lattice Green’s function
and self-consistency of the A block

In the preceding section, we determined Sloc, which com-
pletely determines ρ̂

K
via Eq. (7), allowing the computation of

gkασ = 〈n̂kασ 〉ρ̂
K
. We will demonstrate that gkασ can be written

analytically in terms of γkασ , the expectation value nkασ ;0 =
〈n̂kασ 〉K̂2

, and Sloc,ασ . It is natural to reparametrize γkασ using
λkασ = 〈n̂kασ 〉K̂1

= [1 + exp(−γkασ )]−1 ∈ (0, 1) [1]. In gen-
eral, K̂2 can be a mixed state, where nkασ ;0 ∈ [0, 1], and an
analytic expression for gkασ in terms of γkασ and nkασ ;0 is
given in the Appendix. At zero temperature in the metallic
phase, K̂2 will be a pure state after minimization and nkασ ;0

is either zero or one. For the insulating phase at zero temper-
ature, gkασ does not depend on nkασ ;0, and therefore we are
free to choose nkασ ;0 ∈ [0, 1], though for convenience we still
choose zero or one. A general expression for gkασ is presented
in Eq. (S8) in Supplemental Material [24], which in the case
of nkασ ;0 = 1 reduces to

gkασ

∣∣
nkασ ;0=1 = C−1

⎛
⎝ C 0 0

−m21 m22 m23

−m31 −m32 m22

⎞
⎠, (42)
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where

m21 = (λkασ − 1)2Sασ ;11, (43)

m22 = λ2
kασ , (44)

m23 = (1 − λkασ )λkασ , (45)

m31 = (1 − λkασ )λkασ Sασ ;11, (46)

m32 = (1 − λkασ )λkασ Sασ ;12, (47)

C = λ2
kασ + (λkασ − 1)2Sασ ;12. (48)

Furthermore, it is natural to reparametrize λkασ using nkασ =
[gkασ ]33 = 〈n̂(3)

kασ
〉ρ̂

K
, which is the physical density distribution

〈n̂kασ 〉	̂ within the SCDA, as

λkασ = nkασ Sασ ;12

nkασ Sασ ;12 + √
(1 − nkασ )nkασ Sασ ;12

, (49)

resulting in

gkασ

∣∣∣
nkασ ;0=1

=

⎛
⎜⎜⎝

1 0 0
− Sασ ;11

Sασ ;12
(1 − nkασ ) nkασ

A√
Sασ ;12

− Sασ ;11√
Sασ ;12

A −√
Sασ ;12A nkασ

⎞
⎟⎟⎠, (50)

where A = √
(1 − nkασ )nkασ . For the case of nkασ ;0 = 0, we

have

gkασ

∣∣∣
nkασ ;0=0

= C−1

⎛
⎝0 m12 m13

0 m22 m23

0 −m32 m22

⎞
⎠, (51)

where

m12 = λ2
kασ Sασ ;11, (52)

m13 = (1 − λkασ )λkασ Sασ ;11, (53)

m22 = λ2
kασ Sασ ;12, (54)

m23 = (1 − λkασ )λkασ Sασ ;12, (55)

m32 = (1 − λkασ )λkασ

(
S2

ασ ;11 + S2
ασ ;12

)
, (56)

C = (λkασ − 1)2
(
S2

ασ ;11 + S2
ασ ;12

) + λ2
kασ Sασ ;12. (57)

We can similarly reparametrize λkασ in terms of nkασ as

λkασ =
√

nkασ Sασ√
nkασ Sασ + √

(1 − nkασ )Sασ ;12
, (58)

where Sασ =
√

S2
ασ ;11 + S2

ασ ;12, yielding

gkασ

∣∣∣
nkασ ;0=0

=

⎛
⎜⎜⎜⎝

0 Sασ ;11

Sασ ;12
nkασ

Sασ ;11√
Sασ ;12Sασ

A

0 nkασ

√
Sασ ;12

Sασ
A

0 − Sασ√
Sασ ;12

A nkασ

⎞
⎟⎟⎟⎠, (59)

where A = √
(1 − nkασ )nkασ . The local integer time Green’s

function can now be constructed as an average over the Bril-
louin zone as

g′
loc,ασ = 〈n̂iασ 〉ρ̂

K
=

∫
dkgkασ , (60)

using the convention
∫

dk = 1.
Using the self-consistency condition on the A block,

g′
loc,ασ ;A = gloc,ασ ;A, (61)

we can determine the resulting constraints on nkασ ;0, nkασ , u,
and Gασ ;12. There are four constraining equations from the
four corresponding entries of the A block, but only three
of them are independent. The first constraint is [g′

loc,ασ ]11 =
[gloc,ασ ]11, which yields∫

dknkασ ;0 =
∫

<

dk = nασ (G12, u), (62)

where nασ (G12, u) = [gloc,ασ ]11 = [gloc,ασ ]22, the symbol <

denotes the region where nkασ ;0 = 1, while > denotes the
region where nkασ ;0 = 0. The first constraint requires that |�0〉
has the same density as given by nασ (G12, u), and we refer to
this as the Fermi volume constraint. The second constraint is
[g′

loc,ασ ]22 = [gloc,ασ ]22, which yields the density constraint∫
dknkασ =

∫
<

dknkασ +
∫

>

dknkασ = nασ (G12, u). (63)

The third constraint is [g′
loc,ασ ]12 = [gloc,ασ ]12, which yields∫

>

dknkασ = �ασ (G12, u), (64)

where �ασ (G12, u) ≡ Sασ ;12

Sασ ;11
[gloc;ασ ]12. The fourth constraint is

[g′
loc,ασ ]21 = [gloc,ασ ]21, which yields∫

<

dk(1 − nkασ ) = �ασ (G12, u). (65)

The third and fourth constraint are identical as long as the first
and second constraint are satisfied,∫

<

dk(1 − nkασ ) =
∫

>

dknkασ = �ασ (G12, u), (66)

which we refer to as the charge transfer constraint.
We now discuss how to satisfy these three constraints, us-

ing constraints on nkασ ;0 and nkασ . One can start with arbitrary
u and Gασ ;12 ∈ [0, 1/2], which yields some nασ (G12, u) that
determines the Fermi volume and nkασ ;0. Furthermore, one
must choose nkασ such that Eqs. (63) and (66) are satisfied.
To simplify the expression for g′

loc, it is useful to define the
following quantities:

�<ασ =
∫

<

dk(nkασ ;0 − nkασ ) =
∫

<

dk(1 − nkασ ), (67)

�>ασ =
∫

>

dk(nkασ ;0 − nkασ ) = −
∫

>

dknkασ , (68)

A<ασ =
∫

<

dk
√

nkασ (1 − nkασ ), (69)

A>ασ =
∫

>

dk
√

nkασ (1 − nkασ ). (70)
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Using Eqs. (62) and (63), we have �<ασ = −�>ασ . Equa-
tions (62) and (63) are treated as independent conditions,
and Eqs. (64) and (65) become the single condition given in
Eq. (66). For convenience, we define

�ασ ≡ �<ασ = −�>ασ , (71)

nασ ≡
∫

<

dk =
∫

dknkασ , (72)

which should not be confused with the corresponding quan-
tities �ασ (G12, u) and nασ (G12, u) determined from the local
discrete action. The quantity �ασ measures the total charge
transfer generated by the projector K̂1P̂1 across the Fermi
surface determined by |�0〉, and is uniquely determined from
ρ̂

loc;i
. The noninteracting case yields �ασ = 0, while the

strong coupling limit of the Mott insulating phase yields
nkασ = nασ and �ασ = nασ (1 − nασ ). Once nkασ and nkασ ;0

have been constrained by Eqs. (62), (63), and (66), the total
kinetic energy can be evaluated as

K =
∑
ασ

∫
dkεkασ nkασ . (73)

We now discuss the properties of A<ασ and A>ασ , which
are relevant for evaluating the B, C, and D blocks of g′

loc;ασ .
The noninteracting case yields A<ασ = A>ασ = 0, while
for a given nασ and �ασ the maximum value of A<ασ

is reached when nkασ |k∈< = 1 − �ασ/nασ , and therefore
A<ασ ∈ [0,

√
(nασ − �ασ )�ασ ]. Similarly, the maximum of

A>ασ is reached when nkασ |k∈> = �ασ/(1 − nασ ) and there-
fore A>ασ ∈ [0,

√
(1 − nασ − �ασ )�ασ ]. Using these defini-

tions, we have

∫
<

dkgkασ

=

⎛
⎜⎜⎝

nασ 0 0
− Sασ ;11

Sασ ;12
�ασ nασ − �ασ

A<,ασ√
Sασ ;12

− Sασ ;11√
Sασ ;12

A<,ασ −√
Sασ ;12A<,ασ nασ − �ασ

⎞
⎟⎟⎠,

(74)

and ∫
>

dkgkασ

=

⎛
⎜⎜⎜⎝

0 Sασ ;11

Sασ ;12
�ασ

Sασ ;11√
Sασ ;12Sασ

A>,ασ

0 �ασ

√
Sασ ;12

Sασ
A>,ασ

0 − Sασ√
Sασ ;12

A>,ασ �ασ

⎞
⎟⎟⎟⎠, (75)

yielding the local lattice Green’s function

g′
loc,ασ =

⎛
⎜⎝ nασ

Sασ ;11

Sασ ;12
�ασ g13

− Sασ ;11

Sασ ;12
�ασ nασ g23

g31 g32 nασ

⎞
⎟⎠, (76)

where

g13 = Sασ ;11√
Sασ ;12Sασ

A>,ασ , (77)

g23 = 1√
Sασ ;12

A<,ασ +
√

Sασ ;12

Sασ

A>,ασ , (78)

g31 = − Sασ ;11√
Sασ ;12

A<,ασ , (79)

g32 = −√
Sασ ;12A<,ασ − Sασ√

Sασ ;12
A>,ασ . (80)

The above equations provide explicit expressions for all
blocks of g′

loc;ασ .

D. Determining the B, C, and D blocks of G and evaluating
the total energy

Assuming that Sloc and g′
loc have been completely deter-

mined, the self-consistency condition gloc = g′
loc can be used

to determine the remaining blocks of G via the discrete Dyson
equation as

G = (
1 + (

g−1
loc − 1

)
S−1

loc

)−1
, (81)

which yields

GB = GAg−1
loc;Agloc;B, (82)

GC = gloc;C (1 − gloc;A)−1(1 − GA), (83)

GD = gloc;D + gloc;C (1 − gloc;A)−1(gloc;A − GA)g−1
loc;Agloc;B.

(84)

The individual matrix elements of G are provided in Supple-
mental Material [24].

We now proceed to compute the total energy. Having com-
pletely determined G, the local interaction energy can be
computed using Eq. (29) as

Eloc = uT
(
Ĥ

(3)
loc

)
uu

uT (1̂)uu
, (85)

where the matrix (Ĥ
(3)
loc )u depends on G and the matrix (1̂)u

depends on GA. It should be emphasized that the density
distribution nkασ will influence Eloc through GB and GC .

III. RESULTS FOR SU(2Norb) HUBBARD MODEL

We now proceed to illustrate the gauge constrained im-
plementation of VDAT within the SCDA at N = 3. We
choose to study the SU(2Norb) Hubbard model, where Ĥloc;i =
U

∑
�<�′ n̂i�n̂i�′ and � = 1, . . . , 2Norb, in order to showcase

the advantages of VDAT over DMFT for obtaining zero-
temperature results at large Norb. It should be noted that the
SU(2Norb) symmetry can be exploited when evaluating the
expectation values of local observables [i.e., Eq. (29)], but for
purposes of benchmarking the computational cost, we utilized
the general algorithm, which does not exploit the SU(2Norb)
symmetry. Therefore, for a single evaluation of the SPD, the
computational cost is the same as the general case. To provide
a rough idea of the computational cost on a typical single pro-
cessor core, when Norb � 3 the cost of a single evaluation of
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the SPD is 10−4 seconds. For Norb > 3, the computational cost
scales exponentially, requiring 10−3, 0.02, 0.1, and 3 s for Norb

of 4, 5, 6, and 7, respectively. The timing difference between
N = 2 and N = 3 is negligible in all the aforementioned
cases. We study the SU(2Norb) Hubbard model on the d = ∞
Bethe lattice for Norb = 2–8 at half-filling and 2Norb = 5 for
all fillings. At half-filling for Norb = 2, 4 we compare to a
zero-temperature extrapolation of published DMFT results
using a quantum Monte Carlo (QMC) impurity solver [25],
while for 2Norb = 5 we compare to published DMFT results
using the numerical renormalization group (NRG) impurity
solver [26]. All VDAT results in this paper are generated by
a Julia implementation of the gauge constrained algorithm,
which can treat general density-density interactions, and is
available at Ref. [27].

We begin by considering the case of half-filling for
Norb = 2–8, exceeding the number of orbitals that would
be encountered for a d or f electron manifold relevant to
strongly correlated electron materials. The basic aspects of
the SU(2Norb) Hubbard model in d = ∞ are well understood:
there is a metal-insulator transition (MIT) at a critical value of
U , and this transition value increases with Norb. The signature
of the MIT can be seen in the variational parameters of the
SPD, and therefore it is instructive to examine Gασ ;12, bασ<,
and the local variational parameters u = {u�} (see Fig. 1). It
is also useful to explore the intermediate parameters aασ<,
which can be determined from the variational parameters.
Because of the SU(2Norb) symmetry, the Gασ ;12, bασ<, and
aασ< are independent of ασ , while u� only depends on the
particle number of �. Furthermore, particle-hole symmetry
at half-filling dictates that bασ< = bασ>, aασ< = −aασ>, and
u� = u�′ if the sum of the particle numbers of � and �′ is
2Norb. Considering Gασ ;12, it begins at U = 0 in the metallic
phase with a value of roughly 0.37 and monotonically in-
creases to 0.5 at the MIT, and is fixed at 0.5 in the insulating
regime [see Fig. 1(a)]. Increasing the number of orbitals from
Norb = 2–8 has several effects. In the small U regime, Gασ ;12

increases with Norb, enhancing the electronic correlations for
larger Norb. Alternatively, increasing Norb will increase the
critical value of U for the metal-insulator transition. The vari-
ational parameter bασ< turns out to be approximately equal
to U , and therefore we also plot bασ< − U [see Fig. 1(b)].
The intermediate parameter aασ<, which can be computed
from the variational parameters, has a value of 2t for U = 0,
independent of Norb, and goes to zero in the insulating phase
[see Fig. 1(c)]. The latter can be appreciated from Eq. (22),
which dictates that the quasiparticle weight becomes zero
when aασ< = aασ> and bασ< = bασ>. For a given Norb, there
is an arbitrary coefficient for the interacting projector, which
can be fixed by choosing u� = 1 when the particle number
of � is Norb. Therefore, there are Norb independent local
variational parameters u� for � with particle number equal
to 0, . . . , Norb − 1. For a given Norb, we plot the u� where the
particle number for � is Norb–1 [see Fig. 1(d)], in addition to
all u� for Norb = 5. The u� for � with particle number Norb–1
goes to zero in the insulating phase.

We now consider the total energy, where we explore both
N = 2 and N = 3 [see Fig. 2(a)]. For clarity, we plot �E =
E (t,U ) − E (0,U ) divided by the number of spin orbitals.

FIG. 1. Optimized variational parameters of VDAT within the
SCDA at N = 3 for the SU(2Norb) Hubbard model on the d = ∞
Bethe lattice at half-filling and T = 0, with Norb = 2–8. The vari-
ational parameters Gασ ;12, bασ<, and u� for � with particle number
Norb − 1 are shown in (a), (b), and (d), respectively, while the depen-
dent parameters aασ< are shown in (c). The inset of (d) shows all u�

for Norb = 5, and the value monotonically decreases as the particle
number of � decreases from four to zero.

The N = 3 results are always lower in energy than the N = 2
results, as is required by the variational principle. Further-
more, the N = 3 results resolve the well-known deficiency
of the N = 2 results in the insulating regime. Interestingly,
in the small and large U regimes, the quantity �E/(2Norb) is
largely independent of Norb, while in the intermediate regime
it decreases with Norb. Similar behavior is observed in the
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FIG. 2. Static observables computed from VDAT within the
SCDA at N = 2 (dashed lines) and N = 3 (solid lines) for the
SU(2Norb) Hubbard model on the d = ∞ Bethe lattice at half-filling
and T = 0, with Norb = 2–8. The legend colors are identical to Fig. 1.
(a) Total energy difference per spin orbital vs. U/t , where �E =
E (t,U ) − E (0,U ). (b) Kinetic energy per spin orbital vs. U/t .
(c) Scaled double occupancy vs. U/t , where D̃ = (D − Dat )/(D0 −
Dat ); D, D0, and Dat are the double occupancies at the given U/t , the
noninteracting value, and the atomic value, respectively.

kinetic energy per orbital [see Fig. 2(b)]. The double
occupancy D determines the interaction energy, and for con-
venience we plot the scaled double occupancy D̃ = (D −
Dat )/(D0 − Dat ), where D0 and Dat are the noninteracting and
atomic double occupancy, respectively [see Fig. 2(c)]. In the
small U regime, the scaled double occupancy decreases with
Norb, while in the large U regime it is independent of Norb.

FIG. 3. Results for VDAT within the SCDA at N = 2 and N =
3 for the SU(2Norb) Hubbard model on the d = ∞ Bethe lattice at
half-filling and T = 0, with Norb = 2–8. (a) Quasiparticle weight.
The legend is identical to Fig. 1. (b) The critical value of U for
the MIT, denoted Uc, as a function of Norb. The DMFT curve is a
plot of a previously published fit to DMFT results [25], given as
Uc/t = 1.7(2Norb + 1)(1 + 0.166N−1

orb ).

It is also interesting to evaluate the quasiparticle weight as
a function of U/t , which determines the critical value of U for
the MIT [see Fig. 3(a)]. The N = 2 result always produces a
large quasiparticle weight than N = 3, and therefore produces
a larger critical value of U for the MIT. Interestingly, for
N = 3 at approximately U/t = 1, the quasiparticle weight
is insensitive to Norb, and a similar effect is observed for
N = 2 at a slightly large value of U/t . We also examine
the transition value Uc/t as a function of Norb and com-
pare to the previously published scaling relation [25] Uc/t =
1.7(2Norb + 1)(1 + 0.166N−1

orb) extracted from DMFT calcu-
lations, which use QMC as the impurity solver [see Fig. 3(b)].
The N = 2 case recovers the previously published results of
the Gutzwiller approximation [28,29], yielding a linear rela-
tion. Interestingly, N = 3 also produces a nearly linear result,
but the result is shifted downward, nearly coinciding with the
DMFT extrapolation.

We now proceed to compare the total energy at half-filling
and zero temperature from VDAT and DMFT. Given that the
previously published DMFT results are at a finite temperature
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FIG. 4. The total energy of the SU(2Norb) Hubbard model on
the d = ∞ Bethe lattice at half-filling from published DMFT cal-
culations solved using QMC at a finite temperature [25] and VDAT
within the SCDA at zero temperature using N = 2–4, with Norb = 2
in (a) and Norb = 4 in (b). The lines are a fit to the DMFT results
assuming E (T ) − E (0) ∝ T 2.

[25], a quadratic fit assuming E (T ) − E (0) ∝ T 2 was used
to extrapolate to zero temperature (see Fig. 4). We were only
able to examine select cases where the QMC data sufficiently
resembled a quadratic. For Norb = 2, we present VDAT re-
sults for N = 2 − 4, which were previously published in
Ref. [3], while for Norb = 4 we present VDAT results for N =
2 − 3. As required by the variational principle, the energy
within VDAT monotonically decreases with increasing N .
The dramatic improvement of N = 3 over N = 2 is clearly
illustrated, and it should be recalled that these two cases have
a similar computational cost.

Finally, we evaluate the doping dependence of the total
energy, in addition to the corresponding first and second
derivatives, using VDAT with N = 2 and N = 3. We com-
pare to a previously published DMFT study which used the
NRG impurity solver [26] to study 2Norb = 5 for U/t = 6
and U/t = 14 (see Fig. 5), where U/t = 6 is a metal at
all densities and U/t = 14 undergoes an MIT at the integer
fillings of n = 0.2 and n = 0.4. We first compare the total
energy, where the variational principle guarantees that the
energy monotonically decreases from N = 2 to N = 3 to
the numerically exact solution given by DMFT solved within
NRG [see Fig. 5(a)]. It should be noted the DMFT study

FIG. 5. Doping dependent results of the SU(2Norb) Hubbard
model on the d = ∞ Bethe lattice at zero temperature from pub-
lished DMFT calculations solved using NRG [26] and VDAT within
the SCDA using N = 2 and N = 3, with 2Norb = 5. (a) Total energy
difference �E vs. density, where �E = E (t,U ) − E (0,U ). The
DMFT curve is obtained by integrating the chemical potential over
density. (b) �μ/U vs. density, where �μ = μ − 2U . The insets plot
the absolute error in �μ/U vs. density. (c) The derivative ∂n/∂μ

times U vs. the density.

did not provide the total energy, and we obtained it by nu-
merically integrating the chemical potential over the density.
For clarity, we plot �E/t where �E = E (t,U ) − E (0,U )
and E (t,U ) is the total energy evaluated at a given density.
Overall, N = 3 yields a dramatic improvement over N = 2,
especially at integer fillings. Interestingly, the trends in the
absolute error of the total energy are notably different for
N = 2 and N = 3, where the former has the largest absolute
error at integer filling while the latter has the largest absolute
error midway between integer fillings. The trend for N = 3
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might be attributed to the efficacy of the kinetic projector
for capturing superexchange at integer filling. We proceed to
compare the chemical potential, which is the derivative of the
energy with respect to the density, as a function of density [see
Fig. 5(b)]. Within VDAT, the chemical potential was obtained
using finite difference to take the first derivative of the total
energy with respect to the density, and a grid spacing of 0.002
was used for 0.02 < nασ � 0.5 while 0.0001 was used for
nασ < 0.02. For clarity, we plot �μ/U where �μ = μ − 2U .
The Mott transition can clearly be identified as a discontinuity
in the chemical potential at integer fillings. While N = 2
is reasonable overall, there are clear discrepancies near the
MIT (see insets for absolute error in �μ/U ), and N = 3
largely resolves these issues. However, it should be recalled
that unlike the total energy, the convergence of the chemical
potential is not necessarily monotonic in N . For example,
in the case of U/t = 14 and n → 0.2−, the total energy for
N = 2 is substantially larger than N = 3, yet the chemical
potential for N = 2 is much closer to the exact solution. To
further scrutinize these same results from another viewpoint,
we examine U∂n/∂μ as a function of density [see Fig. 5(c)].
Within VDAT, ∂μ/∂n was obtained using finite difference to
take the second derivative of the total energy, and the same
grid spacing was used as in the case of the chemical potential.
For the low-density region nασ < 0.1, the N = 3 results were
smoothed using a spline interpolation. Similar to the chemical
potential, the convergence of this quantity is not necessarily
monotonic in N , and the same conclusions can be drawn.

IV. CONCLUSIONS

In this paper, we proposed a gauge constrained algorithm
to evaluate the SPD ansatz at N = 3 within the SCDA for the
multiorbital Hubbard model. The key feature of this algorithm
is that it automatically satisfies the self-consistency condition
of the SCDA using the gauge freedom of the SPD, greatly
facilitating the minimization over the variational parameters.
Interestingly, the gauge constrained algorithm yields a simple
analytical form of the single-particle density matrix of the
optimized SPD ansatz. The convenient mathematical form of
the gauge constrained algorithm greatly simplifies the imple-
mentation of VDAT within the SCDA when treating a large
number of orbitals. In order to showcase the power of the
gauge constrained algorithm, we studied the SU(2Norb) Hub-
bard model at zero temperature on the Bethe lattice in d = ∞
for Norb = 2–8, and compare to numerically exact DMFT
results where available. While the symmetry of the SU(2Norb)
Hubbard model greatly reduces the computational cost for
solving the DMFT impurity model, computational limitations
still restrict most studies to relatively small values of Norb.
A DMFT study using a numerical renormalization group im-
purity solver presented results up to 2Norb = 5 [26], while a
study using a quantum Monte Carlo impurity solver presented
finite-temperature results up to Norb = 8 [25]; though the lat-
ter results were at relatively high temperatures and appear
to have nontrivial stochastic error. Therefore, our success-
ful execution of Norb = 8 showcases the utility of the gauge
constrained algorithm for executing VDAT within the SCDA
at N = 3. At half-filling, we evaluated the kinetic energy,
interaction energy, and quasiparticle weight as a function of

U/t . For the doped case, we evaluated the density as a function
of the chemical potential, in addition to the derivative, at
various values of U/t . As expected, N = 3 yields a dramatic
improvement over N = 2, at a similar computational cost.
The successful computation of the ground-state energy for the
Norb = 7 Hubbard model on a single processor core in under
one hour demonstrates the viability of VDAT to study realistic
f -electron systems. The technical developments in this work
are a key step forward towards studying realistic Hamiltonians
of complex strongly correlated electron materials.
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APPENDIX A: SOLVING MULTIORBITAL HUBBARD
MODEL WITH A DENSITY CONSTRAINT

It is often desirable to solve a Hamiltonian with fixed
densities for the spin orbitals, which can be efficiently ex-
ecuted by reparametrizing the variational parameters u. We
begin by realizing that the vector space associated with u can
be constructed as a direct product of two-dimensional vector
spaces associated with each spin orbital. For an operator in
the compound space Ô = ∏

ασ Ôασ , the representation in the
u basis can be constructed as

(Ô)u = (Ô1↑)u;1↑ ⊗ · · · ⊗ (ÔNorb↓)u;Norb↓. (A1)

Using this relation, Eqs. (32) and (34) are recast as

(1̂)u = (1̂)u;1↑ ⊗ · · · ⊗ (1̂)u;Norb↓, (A2)(
â†(τ )

ασ â(τ ′ )
ασ

)
u = (

1̂
)

u;1↑ ⊗ · · ·
× ⊗(

â†(τ )
ασ â(τ ′ )

ασ

)
u;ασ

· · · ⊗ (1̂)u;Norb↓, (A3)

where

[(1̂)u;ασ ]�ασ �′
ασ

= pασ (�ασ , �′
ασ ), (A4)[(

â†(τ )
ασ â(τ ′ )

ασ

)
u;ασ

]
�ασ �′

ασ

= gττ ′
ασ (�ασ , �′

ασ ), (A5)

where pασ (�ασ , �′
ασ ) and gττ ′

ασ (�ασ , �′
ασ ) are defined in

Eqs. (33) and (35), respectively. The relevant matrices, which
will be needed to constrain the orbital density are

(1̂)u;ασ =
(
G2

ασ,12 + 1
4

1
4 − G2

ασ,12
1
4 − G2

ασ,12 G2
ασ,12 + 1

4

)
, (A6)

(
â†(1)

ασ â(1)
ασ

)
u;ασ

=
(

0 0
1
4 − G2

ασ,12 G2
ασ,12 + 1

4

)
, (A7)

(
â†(2)

ασ â(2)
ασ

)
u;ασ

=
(

0 1
4 − G2

ασ,12

0 G2
ασ,12 + 1

4

)
. (A8)

In summary, Eq. (A1) provides a simple mathematical struc-
ture to construct (Ô)u.
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We now proceed to reparametrize the variational parame-
ters u. In general, one can introduce a linear transformation
over the variational parameters as u = V w, and by requiring
wT (Ô)ww = uT (Ô)uu, a new matrix form is obtained as

(Ô)w ≡ V T (Ô)uV. (A9)

In order to preserve the direct product structure of (Ô)w,
the transformation is constructed as V = V1↑ ⊗ · · · ⊗ VNorb↓,
resulting in

(Ô)w = (Ô1↑)w;1↑ ⊗ · · · ⊗ (ÔNorb↓)w;Norb↓, (A10)

(Ôασ )w;ασ ≡ V T
ασ (Ôασ )u;ασVασ . (A11)

In order to ensure that (1̂)w;ασ is the identity matrix and the
symmetric part of (â†(1)

ασ â(1)
ασ )w;ασ is diagonal, we have

V ασ = 1√
2

(
1

2Gασ,12
+ 1 1 − 1

2Gασ,12

1 − 1
2Gασ,12

1
2Gασ,12

+ 1

)
, (A12)

thus completely defining the reparametrization. One of the
necessary reparametrized matrix elements is

nw;ασ ≡ 1

2

((
â†(1)

ασ â(1)
ασ

)
w;ασ

+ (
â†(1)

ασ â(1)
ασ

)T

w;ασ

)

=
⎛
⎝− (1−2Gασ,12 )2

8Gασ,12
0

0 (2Gασ,12+1)2

8Gασ,12

⎞
⎠, (A13)

and the others are provided in Supplemental Material [24].
We now proceed to constrain the density for each spin

orbital, and we begin by considering the case where the in-
teracting projector is a noninteracting density matrix, which
can be written as

w2
�;0 =

∏
αα

((1 − nασ ;eff )(1 − �ασ ) + nσα;eff�ασ ), (A14)

where nασ ;eff can be determined from

Tr

(
nw;ασ

(
1 − nασ ;eff 0

0 nσα;eff

))
= nασ , (A15)

which can be solved as

nασ,eff = 2(2nασ − 1)Gασ,12

4G2
ασ,12 + 1

+ 1

2
. (A16)

Subsequently, 22Norb − (1 + 2Norb) variational parameters xη

can be introduced to describe the deviations from w2
�;0, which

do not change the density or the normalization. It is then
useful to define a 22Norb × 22Norb matrix V�η as

V�i({α1σ1,...,αnσn}) =
n∏

j=1

(
�α jσ j − 1

2

)
, (A17)

where i({α1σ1, . . . , αnσn}) = 1, . . . , 22Norb is a convention for
indexing all subsets of {1 ↑, 1 ↓, . . . , Norb ↑, Norb ↓}, and
n = 0, . . . , 2Norb denotes the number of spin orbitals con-
tained in a given subset. A convenient convention for sorting
the subsets is first sorting by increasing cardinality and then
by the binary interpretation of the subset. The subsets with
cardinality greater than one form 22Norb − (1 + 2Norb) orthog-
onal vectors that do not change the normalization or the orbital

occupation. A similar approach has been used to represent
the Bernoulli distribution [30]. A general interacting projector
that is constrained to the given orbital occupation can be
parameterized as

w2
� = w2

�;0 +
22Norb∑

η=2+2Norb

V�ηxη, (A18)

where xη are real numbers that are constrained by the con-
dition that ω2

� � 0. For example, Norb = 1 results in one
independent variational parameter x, yielding

w2
1 = (1 − n↑;eff )(1 − n↓eff ) + 1

4 x, (A19)

w2
2 = (1 − n↑;eff )n↓eff − 1

4 x, (A20)

w2
3 = n↑;eff (1 − n↓eff ) − 1

4 x, (A21)

w2
4 = n↑;eff n↓eff + 1

4 x, (A22)

where x ∈ [xmin, xmax] and

xmin = −4 min((1 − n↑;eff )(1 − n↓eff ), n↑;eff n↓eff ), (A23)

xmax = 4 min((1 − n↑;eff )n↓eff , n↑;eff (1 − n↓eff )). (A24)

Finally, the ground-state energy can be obtained as

E = min
G12,x,b

(∫
dkεkασ nkασ (a, b) + Eloc(G12, x, b)

)
, (A25)

where x = {xη} and a is determined from {nασ }, G12, x, and b.

APPENDIX B: GAUGE CONSTRAINED ALGORITHM
USING GENERAL LOCAL PROJECTORS

In this paper, we have assumed that the interacting pro-
jector can be written as a linear combination of diagonal
Hubbard operators in the basis ασ , and that G is diagonal
in basis ασ . Here we outline how to treat the general case,
starting with the first assumption. A general local interacting
projector can be an arbitrary linear combination of all possible
Hubbard operators, including off-diagonal Hubbard operators.
A general Hubbard operator can be constructed as

P̂i� =
∏
ασ

(δ�ασ ,0(1 − n̂iασ ) + δ�ασ ,1n̂iασ

+ δ�ασ ,2â†
iασ + δ�ασ ,3âiασ ), (B1)

=
∏
ασ

P̂iασ ;�ασ
, (B2)

where � − 1 = (�1↑ . . . �Norb↓)4 and � = 1, . . . , 42Norb . The
most general interacting projector can be constructed as
P̂i(u) = ∑

� u�P̂i� . However, given that we require P̂i(u) to
obey certain symmetries and conservation relations, some u�

may be zero. In order to evaluate 〈P̂(1)
i P̂

(2)
i Ô〉ρ̂

loc;i,0
, we first

consider

Ô =
∏
ασ

Ôασ , (B3)
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where Ôασ is a single product in terms of â†(τ )
iασ and â(τ )

iασ ,
yielding〈

P̂
(1)
i P̂

(2)
i Ô

〉
ρ̂

loc;i,0

=
∑
��′

u�u�′
〈
P̂

(1)
i� P̂

(2)
i�′ Ô

〉
ρ̂

loc;i,0

, (B4)

where

〈
P̂

(1)
i� P̂

(2)
i�′ Ô

〉
ρ̂

loc;i,0

=
〈∏

ασ

P̂
(1)
iασ ;�ασ

∏
ασ

P̂
(2)
iασ ;�′

ασ

∏
ασ

Ôασ

〉
ρ̂

loc;i,0

(B5)

= θ (Ô, �, �′)
∏
ασ

〈
P̂

(1)
iασ ;�ασ

P̂
(2)
iασ ;�′

ασ
Ôασ

〉
ρ̂

loc;i,0

,

(B6)

where θ (Ô, �, �′) = ±1 and is determined by tracking the
sign when ordering the expression from Eq. (B5) to Eq. (B6).
For a general operator Ô, one can always decompose it into
a sum of operators, which has the form of Eq (B3) and apply
the above formulas.

In order to treat a general G and a general operator Ô,
one must straightforwardly apply Wick’s theorem to evaluate
expectation values [1], though the resulting gauge constrained
algorithm will be more complicated. For example, simple
closed form equations such as Eq. (22) may not be obtained,
requiring a numerical minimization to obtain the density
distribution.

APPENDIX C: UNDERSTANDING HOW THE N = 3
GAUGE CONSTRAINED ALGORITHM WITH A

RESTRICTED KINETIC PROJECTOR REDUCES TO N = 2

In Ref. [1], we illustrated how the SCDA at N = 2 using
the Gutzwiller gauge recovers the Gutzwiller approximation.
In the present work where we address N = 3, the gauge
constrained algorithm uses a different type of gauge. There-
fore, it is interesting to see how the N = 3 gauge constrained
algorithm with a restricted kinetic projector can recover the
Gutzwiller approximation. In particular, the restricted kinetic
projector will force the density distribution to be flat both
above and below the fermi surface. We begin by assuming

Gασ =

⎛
⎜⎝

1
2

1
2

1
2

− 1
2

1
2

1
2

− 1
2 − 1

2
1
2

⎞
⎟⎠, (C1)

which is motivated by the Gutzwiller gauge. The canonical
discrete action of Gασ corresponds to an SPD [1], which is
the product of three identity operators, and we can write the A
block for interacting Green’s function as

gloc,ασ ;A =
(

nασ aασ rασ

−aασ rασ nασ

)
, (C2)

where aασ = √
(1 − nασ )nασ and rασ denotes the renormal-

ization for the off-diagonal elements of the A block compared
to the reference interacting Green’s function

gloc,ασ ;A;ref =
(

nασ aασ

−aασ nασ

)
, (C3)

which corresponds to the case where P̂ is noninteracting,
denoted as P̂0. The P̂0 is chosen such that

Tr
(
P̂2

0 n̂ασ

)
Tr

(
P̂2

0

) = Tr(P̂2n̂ασ )

Tr(P̂2)
= nασ , (C4)

and rασ is given as

rασ = Tr(P̂â†
ασ P̂âασ )

Tr(P̂2)

/
Tr(P̂0â†

ασ P̂0âασ )

Tr
(
P̂2

0

) , (C5)

The point of introducing the reference P̂0 is to allow com-
parison with the Gutzwiller approximation. Given that the
local energy can be computed as

Eloc = Tr(P̂2Ĥloc)

Tr(P̂2)
, (C6)

which is the same as in the Gutzwiller approximation, the
remaining task is to confirm that the kinetic energy recovers
the Gutzwiller approximation when restricting the density
distribution to be flat, and confirm that the self-consistency
of the SCDA is maintained.

We begin by computing the A block of the local integer
time self-energy as

Sloc,ασ ;A = (
G−1

ασ ;A − 1
)−1(

g−1
loc,ασ ;A − 1

)
, (C7)

which yields the integer time self-energy as

Sloc,ασ =
⎛
⎝ Sασ ;11 Sασ ;12 0

−Sασ ;12 Sασ ;11 0
0 0 1

⎞
⎠,

where

Sασ ;11 = aασ rασ

nασ

(
nασ − (nασ − 1)r2

ασ

) ,

Sασ ;12 = 1

nασ − (nασ − 1)r2
ασ

− 1.

Assuming the kinetic projector is the identity, corresponding
to λkασ,1 = 1/2, we get a flat distribution in both the < and >

region, yielding

nkασ |k∈< = nασ

(
1 − r2

ασ

) + r2
ασ , (C8)

nkασ |k∈> = nασ

(
1 − r2

ασ

)
. (C9)

One can verify that the integral of the density distribution
yields the corresponding local density as∫

<

nkασ dk +
∫

>

nkασ dk = nασ , (C10)

and the real-space renormalization of the hopping parameter,
Zασ , can be computed as

Zασ = nkασ |k∈< − nkασ |k∈> = r2
ασ , (C11)

which recovers the Gutzwiller approximation.
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We now confirm that the self-consistency condition of
the SCDA is maintained. Computing the local integer time
Green’s function yields

g′
loc =

⎛
⎜⎜⎝

nασ aασ rασ aασ rασ

−aασ rασ nασ nασ

−aασ rασ nασ − 1 nασ

⎞
⎟⎟⎠, (C12)

which yields

G ′ =

⎛
⎜⎝

1
2

1
2

1
2

− 1
2

1
2

1
2

− 1
2 − 1

2
1
2

⎞
⎟⎠, (C13)

which indicates that the SCDA self-consistency is satisfied.
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