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Anharmonic phonon behavior via irreducible derivatives:
Self-consistent perturbation theory and molecular dynamics
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Cubic phonon interactions are now regularly computed from first principles, and the quartic interactions
have begun to receive more attention. Given this realistic anharmonic vibrational Hamiltonian, the classical
phonon Green’s function can be precisely measured using molecular dynamics, which can then be used to
rigorously assess the range of validity for self-consistent diagrammatic approaches in the classical limit. Here
we use the bundled irreducible derivative approach to efficiently and precisely compute the cubic and quartic
phonon interactions of CaF2, systematically obtaining the vibrational Hamiltonian purely in terms of irreducible
derivatives. We demonstrate that the 4-phonon sunset diagram has an important contribution to the optical
phonon linewidths beyond T = 500 K. Reasonable results are obtained even at T = 900 K when performing self-
consistency using the 4-phonon loop diagram and evaluating the 3-phonon bubble and 4-phonon sunset diagrams
post-self-consistency. Further improvements are obtained by performing quasiparticle perturbation theory, where
both the 4-phonon loop and the real part of the 3-phonon bubble are employed during self-consistency. Our
irreducible derivative approach to self-consistent perturbation theory is a robust tool for studying anharmonic
phonons in both the quantum and classical regimes.

DOI: 10.1103/PhysRevB.107.094303

I. INTRODUCTION

Lattice anharmonicity is essential to the understanding
of many physical properties of solids, such as thermal ex-
pansion and thermal conductivity [1]. Therefore, computing
phonon interactions from first principles is a critical task.
Preliminary calculations of cubic phonon interactions from
density functional theory (DFT) began decades ago using
finite displacements [2], and density functional perturbation
theory (DFPT) computations eventually followed [3,4]. Cu-
bic phonon interactions have since been computed in a wide
range of crystals using both DFPT and finite displacements
[5]. Quartic phonon interactions were investigated early on
as well using DFT with finite displacements [6,7]. While
quartic phonon interactions have been formulated at the level
of DFPT [3], we are not aware of any explicit calculations.
Given that the number of derivatives increases drastically
with the order, precisely and efficiently executing finite-
displacement calculations of quartic phonon interactions is
critical. Recently, an approach for computing phonons and
phonon interactions based on irreducible derivatives was put
forward, which maximally uses group theory to reduce com-
putational cost, and the resulting gain in efficiency can be
converted into gains in accuracy [8]. Encoding anharmonic-
ity in terms of irreducible derivatives has many advantages,
including allowing a straightforward comparison between dif-
ferent methods. Whenever possible, it is critical to separately
assess the quality of the vibrational Hamiltonian versus the so-
lution to the vibrational Hamiltonian, as the latter will contain
errors from both aspects. Here we solely focus on comput-
ing the interacting phonon Green’s function of a particular

realistic vibrational Hamiltonian containing up to quartic
phonon interactions.

The vibrational Hamiltonian poses a nontrivial many-
boson problem, and therefore it is challenging to assess the
quality of the method being used to solve the vibrational
Hamiltonian. Imaginary-time quantum Monte Carlo (QMC)
techniques [9,10] can be used to accurately compute thermo-
dynamic observables for relatively large systems, and various
applications exist in the literature using realistic tight-binding
potentials [11,12]. However, it is far more challenging to ob-
tain highly accurate solutions of dynamical quantities, such as
the real-time phonon Green’s function. Imaginary-time QMC
results can be approximately analytically continued to the
real axis [13], but these approaches are uncontrolled and are
best restricted to determining peak locations in the Green’s
function [14]. There are several established techniques which
can be used to approximate real-time quantum correlation
functions [15,16], such as centroid molecular dynamics and
ring polymer molecular dynamics, but these approaches have
various limitations [17] and have not yet been used to compute
phonon linewidths in realistic systems, though recent studies
are beginning to make average comparisons via thermal con-
ductivity [18]. A practical approach for obtaining the Green’s
function on the real axis is to use diagrammatic perturbation
theory, but the problem is assessing whether or not a suf-
ficient number of diagrams have been computed. A partial
solution to this problem is to revert to the classical limit where
the vibrational Hamiltonian can be solved accurately using
molecular dynamics, and then a perturbative solution can be
rigorously assessed. Success implies that the diagrammatic
approach is robust in the classical regime, and will likely
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be sufficient in the quantum regime for sufficiently weak
anharmonicity.

Using molecular dynamics to measure classical dynamical
correlation functions is well established in the context of
empirical potentials [19]. There have been a small number
of studies which use an anharmonic vibrational Hamiltonian
based upon first-principles calculations to measure dynamical
correlation functions within molecular dynamics [20–25], as
is in the present study. Our molecular dynamics is based
purely on irreducible derivatives, which we refer to as ir-
reducible derivative molecular dynamics (IDMD), and we
have developed methods to precisely compute the irreducible
derivatives from first principles [8], ensuring that we are work-
ing with a realistic vibrational Hamiltonian. A key goal of
this work is to use the IDMD results to assess diagrammatic
perturbation theory in the classical limit, and we are not aware
of comprehensive comparisons in the existing literature.

One of the more popular approximations to the interacting
phonon problem is a variational theory which uses a Gaussian
ansatz for the density matrix, which was originally pioneered
by Hooton [26]. This approach can be viewed as the Hartree-
Fock (HF) approximation for interacting phonons [27], given
that the theory variationally determines the optimum non-
interacting bosonic reference system which minimizes the
free energy. Naturally, Hartree-Fock for phonons also has a
clear diagrammatic interpretation, and therefore it is an in-
tegral approach for solving our anharmonic Hamiltonian in
this work. There are several popular approaches which im-
plement this Hartree-Fock approximation for phonons, and
it is useful to contrast them with our own implementation.
The self-consistent phonon (SCP) approach of Ref. [28], later
referred to as the first-order self-consistent phonon (SC1)
approach [29], uses compressive sensing [25,30] to fit the an-
harmonic vibrational Hamiltonian, and then the Hartree-Fock
equations are solved self-consistently in the usual manner.
Compressive sensing is useful given that it can efficiently
fit the anharmonic terms to a relatively small set of forces,
but it is unclear how precisely it recovers the anharmonic
terms as compared to the numerically exact answer, such
as what can be obtained with our irreducible derivative ap-
proach [8]. The SCP approach has been used to compute
temperature-dependent phonon dispersions [28,29,31–33] and
thermal expansion [34,35].

Another approach for executing Hartree-Fock is the
stochastic self-consistent harmonic approximation (SSCHA)
[36,37], which circumvents the need to Taylor-series-expand
the Born-Oppenheimer potential by performing a stochastic
sampling of the gradient of the trial free energy. If executing
the Taylor series is prohibitive, potentially because very high
orders are needed to capture the relevant physics, a stochas-
tic approach might be the only practical method to execute
Hartree-Fock. Another important aspect of the SSCHA is
that the full variational freedom of the Hartree-Fock ansatz
is explored, allowing for the expectation values of the nu-
clear displacements to be included as variational parameters.
However, the SSCHA has its own computational limitations
for proper sampling, and the efficacy of the SSCHA is in-
herently tied to the Hartree-Fock approximation. The SSCHA
has been used in the computation of soft-mode driven phase
transitions [37,38], charge density wave transitions [39], and
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FIG. 1. (a) A schematic of the O(λ2) and O(λ4) bare self-energy
diagrams considered in this work; corresponding labels are provided.
Vertices are bare cubic or quartic phonon interactions, while lines
are the noninteracting phonon Green’s functions. (b) A schematic
of the dressed self-energy diagrams evaluated in this work. Vertices
are bare cubic or quartic phonon interactions, while double lines are
self-consistent phonon Green’s functions obtained using the Hartree-
Fock or quasiparticle approach. An additional schematic illustrating
the interacting Green’s function to O(λ4) using the diagrams in panel
(b) is provided in the Supplemental Material [74] (see Fig. S1).

superconducting properties [36,40–47]. An earlier stochas-
tic approach is the self-consistent ab initio lattice-dynamical
method (SCAILD) [48,49], which can be viewed as an ap-
proximation to the classical limit of the SSCHA. The SCAILD
approach has been used in the computation of temperature-
dependent phonon dispersion and structural phase transitions
[50–52], and was later extended to the quantum case [53,54],
moving the method closer to the SSCHA. Another popular
approach is the temperature-dependent effective potential ap-
proach (TDEP) [55], which uses the forces from a classical
ab initio molecular dynamics trajectory as a source of data
to parametrize an effective quadratic potential. TDEP is not
based on the Hartree-Fock approach: the intent is to faithfully
recover the expectation value of the potential energy of an ab
initio molecular dynamics simulation, and use the resulting
effective quadratic potential to evaluate the corresponding har-
monic quantum free energy [56]. A recent application of the
TDEP method changes course and adopts the stochastic sam-
pling method of the SSCHA [57]. It should be emphasized that
all of the aforementioned approaches could be directly applied
to the anharmonic Hamiltonian in the present study, but this
would offer no benefit as compared to our own Hartree-Fock
solution. The application of SCP would only test whether
the compressive sensing approach faithfully reproduces our
irreducible derivatives, while the SSCHA would only test the
accuracy of the stochastic sampling. While Hartree-Fock is a
key method that is used to study interacting phonon systems, it
will also be important to go beyond Hartree-Fock, motivating
the evaluation of higher-order diagrams.

Diagrammatic perturbation theory is a conventional
method used to compute the phonon Green’s function on the
real axis [58,59]. We consider all O(λ2) self-energy diagrams
and selected O(λ4) diagrams [60] (see Fig. 1 for schematics
and labels). The colloquial diagram names of bubble, loop,
tadpole, sunset, cactus, and figure eight are abbreviated as b,
�, t , s, c, and f , respectively. The mathematical definitions for
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the b, �, s, c, and f diagrams are given in Eqs. (17), (12), (19),
(21), and (24) of Ref. [60], respectively, and the t diagram
is defined in Eq. (2) of Ref. [61]. The classical limit of the
O(λ2) diagrams (i.e., b, �, and t) yields a linear temperature
dependence for the self-energy, while the classical limit of the
O(λ4) diagrams yields a quadratic temperature dependence.
It should be noted that the t diagram is zero in the fluorite
crystal structure [59,61]. The inclusion of all O(λ2) diagrams
is clearly essential. The imaginary part of the b diagram is
widely used in the context of perturbative thermal conduc-
tivity calculations [62,63], and classically will provide the
only contribution to the linewidth to first order in temperature.
The � diagram is purely real, and thus does not influence the
phonon lifetime, and classically will provide a contribution
to the phonon line shift to first order in temperature. The
real part of the b and � diagrams often oppose each other
[61], which justifies the success of using the bare phonon
frequencies and the scattering mechanism of the b diagram
in the linearized Boltzmann transport equation. Our selection
of O(λ4) diagrams will prove to be sufficient when used in
conjunction with self-consistent perturbation theory. The im-
portance of the s diagram might be expected given that it has
a large influence on the phonon lifetime at room temperature
and beyond in select systems [64–66]. An important technical
point in our work is that all diagrams are evaluated using
the tetrahedron method [67], which is important to efficiently
achieving convergence and removes issues associated with
smearing parameters that are typically employed.

Including higher-order diagrams beyond O(λ4) is cum-
bersome, and a more convenient approach is to perform a
self-consistent perturbation theory in terms of the dressed
Green’s function and skeleton diagrams [68]. Perhaps the
simplest approach is the previously discussed Hartree-Fock
approximation for phonons. In the case where symmetry fixes
the expectation values of the nuclear positions, the Hartree-
Fock approximation is simply a self-consistent solution of the
Dyson equation using the � diagram. In this case, an infinite
number of bare diagrams would be summed, including the
c diagram, though an infinite number of diagrams are still
neglected, such as s or any diagram containing a cubic vertex.
The result of this approach is a real, frequency-independent
self-energy which renormalizes the bare phonon frequencies,
though it does not produce a finite linewidth.

One approach for going beyond Hartree-Fock is to use
the resulting self-consistent Hartree-Fock Green’s function to
evaluate the b diagram, which is known as the improved self-
consistent (ISC) method [69], and the ISC is executed in the
present work. The ISC based upon the SCP has been used in
realistic computations of the temperature-dependent phonon
spectrum [31,32], soft-mode driven phase transitions [29,35],
thermal expansion [33,34], and thermal conductivity [28]. An
approach which goes beyond the ISC is the time-dependent
self-consistent harmonic approximation (TD-SCHA) [70,71],
which constructs the Green’s function purely from quantities
that are stochastically measured within Hartree-Fock. Recent
applications of TD-SCHA within the bubble approximation
[70], which is comparable to ISC, have produced reason-
able predictions for the Raman and infrared spectra in ice
[72] and hydrogen under large pressures [47], in addition to
providing a reasonable description of the inelastic x-ray scat-

tering function in NaCl and KCl at room temperature [73].
While the TD-SCHA goes beyond the ISC, it is still a
somewhat limited theory given that important diagrams are
neglected. For example, the TD-SCHA will not capture the ef-
fects of the sunset diagram, which is known to be critical even
at room temperature in select systems [64–66], and we will
demonstrate that it is important in CaF2 beyond T = 500 K.

An obvious approach for further potential improvement
would be to use the Hartree-Fock Green’s function to eval-
uate both the b and s diagrams, which we execute in this
study (see Fig. S1 in Supplemental Material for a schematic
[74]). A final approach is to use quasiparticle perturbation
theory [75,76] and include the real contribution of b in the
self-consistency and then use the resulting Green’s function
to evaluate s, which we also execute. We are not aware of
any previous quasiparticle perturbation theory calculations
for phonons which include frequency-dependent diagrams,
though very recently a “one-shot” approximation was per-
formed [29]. A downside of quasiparticle perturbation theory
is that it is not a conserving approximation [77].

In this study we focus on the prototypical fluorite crystal
CaF2, where we previously computed quadratic and cubic ir-
reducible derivatives using DFT with the strongly constrained
and appropriately normed functional [78]. We demonstrated
that the linewidth of the inelastic neutron scattering function
computed using the b diagram was in good agreement with
experiment throughout the Brillouin zone at room tempera-
ture. This stringent test validated the quality of our quadratic
and cubic irreducible derivatives, and therefore the underly-
ing density functional which was used to compute them, in
addition to the exclusive use of the b diagram to compute the
Green’s function. In the present work, we extend the Taylor
series to include quartic interactions, and our goal is scrutinize
a hierarchy of approximations which are used to compute the
real and imaginary part of the phonon self-energy.

II. METHODOLOGY

The vibrational Hamiltonian for CaF2 is computed from
density functional theory using the lone and bundled irre-
ducible derivative approaches (see Sec. III for details). Here
we outline how to compute the phonon self-energy [59],
�q j j′ (ω) = �q j j′ (ω) − i�q j j′ (ω), in various approximations,
which can be used to construct the phonon line shifts and
linewidths. The contribution of a given self-energy diagram
is denoted �A,a

q j j′ , where a ∈ {b, �, s, t, c, f } labels a given di-
agram (see Fig. 1) and A ∈ {o, HF, QP} labels which Green’s
function was used to evaluate the diagram, where o, HF ,
and QP correspond to the bare, Hartree-Fock, and quasipar-
ticle Green’s function. The HF and QP Green’s functions
are obtained by self-consistently solving for the roots of
|ω2 − V q(ω)|, where

Vq j j′ (ω) = (
ω0

q j

)2
δ j j′ + (2ωq j )

1
2 (2ωq j′ )

1
2 �q j j′ (ω); (1)

ω0
q j is the bare phonon frequency, and ωq j is the renormalized

phonon frequency. In the case of HF , the functional form of
�q j j′ is given by the � diagram, while for QP the form of
�q j j′ is given by the combination of the � diagram and the
real part of the b diagram. The zeros of Eq. (1) deliver the
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updated renormalized frequencies and corresponding eigen-
vectors, which are then used to evaluate the updated �q j j′ ,
and the process is iterated until self-consistency is achieved.
The resulting self-consistent �q j j′ is then used to construct
the HF or QP Green’s function. For the QP case, we also
test a “one-shot” approximation, as recently implemented in
Ref. [29], which replaces the QP self-consistency condition
and instead uses �HF,�

j j′ + �HF,b
j j′ to construct the QP Green’s

function.
For a given scheme A, the self-energy is then approxi-

mated �q j j′ (ω) ≈ ∑
a �A,a

q j j′ (ω). Given that the contribution
from each diagram is additive, it can be useful to analyze
results for various combinations of diagrams. Therefore, we
introduce a notation to indicate which scheme and diagrams
are used to construct a given result as SA

i jk..., where A labels
the scheme and i, j, k, . . . indicate all diagrams evaluated.
In this notation, the ISC approach [69] is denoted SHF

�b , and
the recent one-shot quasiparticle calculation in Ref. [29] is
an approximation to SQP

�b . In this paper, the most diagrams
evaluated in each scheme are So

�bs f c, SHF
�bs f , and SQP

�bs f . All of
the diagrammatic approaches in this study are fully quantum
mechanical approaches, but we evaluate them in the classical
limit by replacing the Bose-Einstein distribution with n(ω) →
kBT/h̄ω and neglecting the zero-point contribution.

Standard molecular dynamics approaches can be used to
obtain the classical solution of the anharmonic Hamiltonian
constructed from irreducible derivatives, which we refer to as
irreducible derivative molecular dynamics (IDMD). Using the
IDMD trajectory, the classical phonon spectral energy density
D(q, ω) at reciprocal point q is computed as

D(q, ω) = 1

2πN

∑
ll′

e−iq·(l−l′ )

×
∑
dd ′

∫
dτe−iωτ 〈r(ld, τ ) · r(l′d ′, 0)〉, (2)

where l labels the lattice translation, d labels atoms within the
primitive unit cell, r(ld ) is the displacement associated with
translation l and basis atom d , and N is the number of unit
cells in the crystal. The quantum D(q, ω) can be constructed
from the quantum single-particle phonon Green’s function
Dq j (ω) as [59,79]

D(q, ω) = − h̄n(ω)

2π

∑
j

Im[Dq j (ω)]

ω0
q j

∑
dd ′

eq jd · e−q jd ′√
Md Md ′

, (3)

where M is the mass of the nuclei, n(ω) is the Bose-Einstein
distribution, and eq jd is the polarization of atom d in the mode
j. The imaginary part of D(q, ω) can be written in terms of the
self-energy as [59]

Im(Dq j (ω)) =
−4

(
ω0

q j

)2
�q j j (ω)(

ω2 − (
ω0

q j

)2 − 2ω0
q j�q j j (ω)

)2 + (
2�q j j (ω)ω0

q j

)2 . (4)

Equations (3) and (4) can be applied in the classical
limit, allowing one to relate the numerical measurements in
Eq. (2) to the classical limit of the self-energy. The simplest
quasiparticle interpretation of some peak in D(q, ω) which is

identified with ω0
q j can be characterized by the following trial

function,

C0

4
(
ω0

q j

)2
C2(

ω2 − (
ω0

q j

)2 − 2ω0
q jC1

)2 + (
2C2ω

0
q j

)2 , (5)

which has three unknown coefficients C0, C1, and C2. For a
given ω0

q j , the corresponding peak in the IDMD measured
D(q, ω) will be used to fit the three unknowns using linear
regression. The energy window used to determine which data
are included in the fit is 5 times the linewidth obtained from
So

�bs. In cases of overlapping peaks in D(q, ω), the corre-
sponding peaks are individually resolved in the basis of the
unperturbed eigenmodes and associated with the correspond-
ing ω0

q j . The parameters resulting from the fitting process may
be interpreted as the phonon line shift �q j j (ω0

q j ) = C1 and
half linewidth �q j j (ω0

q j ) = C2.

III. COMPUTATIONAL DETAILS

DFT calculations within the local density approximation
(LDA) [80] were performed using the projector augmented
wave (PAW) method [67,81], as implemented in the Vienna
ab initio simulation package (VASP) [82–85]. A plane wave
basis with an energy cutoff of 600 eV was employed, along
with a k-point density consistent with a centered k-point
mesh of 20 × 20 × 20 in the primitive unit cell. All k-point
integrations were done using the tetrahedron method with
Blöchl corrections [67]. The DFT energies were converged
to within 10−6 eV, while ionic relaxations were converged to
within 10−5 eV. The structure was relaxed yielding a lattice
parameter of 5.330 Å, in agreement with previous work [86].
The lattice constant is fixed in all calculations, and we do
not consider thermal expansion in the present work, though
it is straight forward to incorporate the strain dependence
of the irreducible derivatives [87]. The face-centered cubic
lattice vectors are encoded in a 3 × 3 row stacked matrix
â = ao

2 (Ĵ − 1̂), where 1̂ is the identity matrix and Ĵ is a matrix
in which each element is 1. The quartic irreducible deriva-
tives were calculated via the bundled irreducible derivative
(BID) approach [8], and the quadratic and cubic terms were
computed in previous work [78]. Up to 10 finite-difference
discretizations were evaluated for a given measurement, such
that robust error tails could be constructed and used to ex-
trapolate to zero discretization. While the BID method only
requires the absolute minimum number of measurements as
dictated by group theory, we tripled this minimum number in
order to reduce the possibility of contamination due to a de-
fective measurement. The LO-TO splitting was treated using
the standard dipole-dipole approach [88,89] and implemented
using irreducible derivatives [87].

The Brillouin zone is discretized using a real-space su-
percell ŜBZ â, where ŜBZ is an invertible matrix of integers
which produces superlattice vectors that satisfy the point
group [8]. Two classes of supercells are used: n1̂ and nŜO =
n(41̂ − Ĵ), where n is a positive integer. The second, third,
and fourth order irreducible derivatives were computed for
ŜBZ = 41̂ (containing 64 primitive cells), ŜBZ = ŜO (contain-
ing 16 primitive cells), and 21̂, respectively. The quadratic and
cubic irreducible derivatives have been previously computed
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FIG. 2. The phonon dispersion of CaF2, including branch labels.
Points are computed from DFT and lines are a Fourier interpolation.

and reported [78], and the quartic terms are reported in Sup-
plemental Material [74]. A plot of the computed phonon band
structure, including branch labels, is shown in Fig. 2.

The IDMD method is implemented using an interface
to the LAMMPS [90,91] software package. The irreducible
derivatives are Fourier-interpolated to a 10 × 10 × 10 super-
cell. The Nose-Hoover thermostat [92] is used along with a 1
fs time step. For a given trajectory at each temperature, 30 000
steps are performed for initialization followed by 600 000
steps. Five trajectories are performed at each temperature, and
all observables are averaged over the five trajectories. For
all diagrammatic calculations, including self-consistent cal-
culations, irreducible derivatives are Fourier-interpolated to a
10 × 10 × 10 supercell, and all integrations over the Brillouin
zone involving the Dirac delta function are performed using
the tetrahedron method [67]. The real part of the self-energy
was obtained via a Kramers-Kronig transformation of the
imaginary part.

IV. RESULTS AND DISCUSSION

We begin by examining D(q, ω) at the � point in an en-
ergy window around the T2g modes (i.e., LO1 and TO2) to
illustrate the various methods used to solve the vibrational
Hamiltonian, which contains up to quartic terms. We will
explore a low temperature and a high temperature, though a
very extensive survey is provided in Supplemental Material
[74]. We first consider the low temperature of T = 100 K,
where the classical perturbative approaches should be able
to reasonably describe the IDMD [see Fig. 3(a)]. The IDMD
results are shown as blue diamonds, where each point is the
result of binning all measurements within a 0.02 meV win-
dow, and the blue line is the result of fitting Eq. (5) to the raw
spectrum. We begin by comparing So

�bs to the IDMD spectra
(see inset), demonstrating excellent agreement with both the
line shift and width, where the former is −0.12 meV and the
latter is 0.16 meV. It is interesting to further decompose the
result of So

�bs into So
b and So

�s, demonstrating that So
b is almost

entirely responsible for the linewidth, but it also substantially
shifts the mode as well. However, the shift from So

b is par-
tially canceled by the shift from So

�s, and it should be noted
that the contribution from So

s is essentially negligible at this

(a) 100K

(b) 900K

(c) 900K

FIG. 3. Plots of D(q, ω) at the � point for an energy window
around the T2g modes. The IDMD results are shown as blue dia-
monds, and the fit is shown as a blue curve. The harmonic phonon
frequency is denoted as a gray vertical line. (a), (b) Results at T =
100 K and T = 900 K for IDMD and bare perturbation theory for
various diagrams. (c) Results at T = 900 K for SQP, SHF

�bs , SHF
�b , and

SHF
� , in addition to IDMD and So

�bs results. Results for So
b and So

�s at
100 K were rescaled by 0.94 and 0.06, respectively. Results for So

b ,
So

�s, So
�bs, and SHF

�bs at 900 K were rescaled by 0.70, 0.43, 1.13, 0.90,
and 0.54, respectively.

temperature. This compensation of the shift between So
b and

So
� is not uncommon [61], and it helps justify the success

of thermal conductivity calculations solely using the bare
phonon frequencies and the So

b scattering mechanism when
solving the linearized Boltzmann transport equation. The sat-
isfactory performance of bare perturbation theory implies that
there is no need to consider self-consistent perturbation theory
at this temperature.

We now proceed to the much higher temperature of T =
900 K, where the shift and width are substantially larger [see
Fig. 3(b)]. As in the low-temperature case, So

b causes a down-
ward shift and generates a nontrivial linewidth. Unlike the
low-temperature case, So

�s not only shifts the peak upward, but
also generates a substantial linewidth. Given that So

� is purely
real, all of the linewidth contribution of So

�s arises from So
s ,

demonstrating that So
s can be an important contribution to the

imaginary part of the self-energy at higher temperatures. Tak-
ing all contributions together, the So

�bs provides a reasonable
description of the IDMD result, though there is a clear error
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FIG. 4. Phonon line shifts [(a), (b)] and linewidths [(c), (d)] of
the TA-2 [(a), (c)] and TO2-2 [(b), (d)] modes at T = 100 K along
various paths through the Brillouin zone. IDMD and So

�bs results are
blue squares and black curves, respectively. Curves between data
points are guides to the eye.

in the shift, which suggests that self-consistent perturbation
theory may be needed. Indeed, SQP

�bs provides an excellent
description of the IDMD results [see Fig. 3(c)]. When moving
down one level to SHF

�bs , the only notable degradation of the re-
sult is a small shift to higher frequencies. It is also interesting
to consider SHF

�b (i.e., the ISC) which shows a substantial error
in the linewidth. Furthermore, it is useful to consider the f
diagram, given that it is recovered by TD-SCHA, and we find
that it only has a very small contribution to both the linewidth
and line shift when evaluating any of the aforementioned
schemes [74].

The preceding analysis carefully explored the results of
different diagrams for a single mode, and we now proceed
to survey select branches throughout the Brillouin zone. We
begin by examining the phonon line shift and width of the
TA-2 and TO2-2 modes at T = 100 K (see Fig. 4). For both
the line shifts and widths, the So

�bs yields results that are close
to the IDMD. There are some regions where small differences
can be noted, and care must be taken when scrutinizing the
results given the overall small magnitude of the numbers at
hand. Nonetheless, the differences mostly appear to arise from
higher-order diagrams, given that including self-consistency
mostly tends to move the diagrammatic solution closer to the
IDMD (see Supplemental Material [74]). The results for the
remaining modes are comparable [74].

Having established the fidelity of our diagrammatic ap-
proaches and IDMD at low temperatures, we now proceed
to the high temperature of T = 900 K where IDMD can be
used to judge the accuracy of different levels of bare and

(a)

(b)

(c)

(d)

FIG. 5. Phonon line shifts [(a), (b)] and linewidths [(c), (d)] of
the TA-2 [(a), (c)] and TO2-2 [(b), (d)] modes at T = 900 K along
various paths through the Brillouin zone. IDMD, SQP

�bs , SHF
�bs , So

�bs, and
So

b results are blue squares, red curves, green curves, black curves,
and dashed black curves, respectively. Curves between data points
are guides to the eye.

self-consistent perturbation theory (see Fig. 5). As done pre-
viously, we explore the TA-2 and TO2-2 modes, but here
we consider self-consistent perturbation theory as well given
the deficiency of bare perturbation theory at this temperature.
We begin by examining the shift of the TA-2 mode [panel
(a)], where So

�bs yields good results in certain portions of the
zone, but performs poorly in selected regions. Including self-
consistency via SQP

�bs and SHF
�bs tends to correct large deviations

that are observed in So
�bs. For the shift of the TO2-2 modes

[panel (b)], the So
�bs result yields a more systematic error,

where the results are shifted in a nearly uniform manner, and
the result even has the wrong sign in some cases. In this case,
SHF

�bs offers a drastic improvement, and SQP
�bs pushes the result

even closer to IDMD. The linewidths have similar behavior to
the line shifts in the two respective cases [see panels (c) and
(d)]. In the case of TA-2, it is interesting to consider So

b , given
its importance in the context of common treatments of thermal
conductivity, and it is clear that it yields remarkable results.
However, So

b performs poorly for the TO2-2 modes. It is also
interesting to consider the effect of the f diagram, and it is
shown to only have a small effect on both the linewidths and
line shifts [74]. The general trends that we have outlined here
can also be seen in other modes, and comprehensive results
for all branches at temperatures of 100 K, 300 K, 500 K,
700 K, and 900 K are included in Supplemental Material
[74]. We also provide a corresponding analysis where all cubic
interactions are set to zero [74].
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V. CONCLUSION

In summary, we have computed the irreducible deriva-
tives of CaF2 up to fourth order, defining the vibrational
Hamiltonian. We use molecular dynamics to solve the vibra-
tional Hamiltonian, which we refer to as irreducible derivative
molecular dynamics (IDMD), yielding the real and imagi-
nary part of the phonon self-energy in the classical limit.
The IDMD result was then used as a benchmark for vari-
ous levels of diagrammatic perturbation theory. At the low
temperature of T = 100 K, we show that bare perturbation
performs well using the b, �, and s diagrams (i.e., So

�bs).
While the linewidth is reasonably well described by the b
diagram alone at T = 100 K, the � diagram is also necessary
to properly capture the lineshift. At the high temperature of
T = 900 K, bare perturbation theory only performs well for
the linewidths of the acoustic modes, where even the b dia-
gram alone yields reasonable results. Treating the � diagram
self-consistently and evaluating the b and s diagrams post-
self-consistency (i.e., SHF

�bs ) is critical to obtaining accurate
line shifts for all branches, in addition to obtaining accurate
linewidths for the optical modes. Further improvement is nor-
mally obtained when performing quasiparticle self-consistent
perturbation theory, where the real part of the b diagram
is used during self-consistency (i.e., SQP

�bs ). While we only
executed self-consistent perturbation theory in the classical
limit in this work, it should be emphasized that the quantum
case has the same computational cost and poses no difficulty
beyond the classical case.

The procedure outlined in this paper of assessing various
levels of diagrammatic perturbation theory in the classical
limit using molecular dynamics should be viable on nearly any
system where the Taylor series can be constructed. Once some
class of diagrams is validated classically, it is likely that the
quantum counterparts will also perform well at lower temper-
atures in the quantum regime so long as the anharmonicity is
sufficiently weak. Furthermore, the prescribed diagrams may
be combined with other diagrammatic approaches to scatter-
ing, such as defects or electron-phonon coupling in the case of
metals. An obvious application of the philosophy of this paper
would be phonon-mediated thermal conductivity, where the
molecular dynamics solution would yield the thermal conduc-
tivity within Kubo-Green linear response, and various levels
of self-consistent diagrammatic perturbation theory could be
tested in conjunction with the linearized Boltzmann transport
equation in the classical limit.
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