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Determining the ground state of multiorbital Hubbard models is critical for understanding strongly correlated
electron materials, yet, existing methods struggle to simultaneously reach zero temperature and infinite system
size. The de facto standard is to approximate a finite dimension multiorbital Hubbard model with a d = ∞
version, which can then be formally solved via the dynamical mean-field theory (DMFT), although the DMFT
solution is limited by the state of unbiased impurity solvers for zero temperature and multiple orbitals. The
recently developed variational discrete action theory (VDAT) offers a new approach to solve the d = ∞ Hubbard
model, with a variational ansatz that is controlled by an integer N , and monotonically approaches the exact
solution at an increasing computational cost. Here we propose a decoupled minimization algorithm to implement
VDAT for the multiorbital Hubbard model in d = ∞ and study N = 2 − 4. At N = 2, VDAT rigorously
recovers the multiorbital Gutzwiller approximation, reproducing known results. At N = 3, VDAT precisely
captures the competition between the Hubbard U , Hund J , and crystal field � in the two-orbital Hubbard model
over all parameter space, with a negligible computational cost. For sufficiently large U/t and J/U , we show that
� drives a first-order transition within the Mott insulating regime. In the large orbital polarization limit with
finite J/U , we find that interactions have a nontrivial effect even for small U/t . VDAT will have far ranging
implications for understanding multiorbital model Hamiltonians and strongly correlated electron materials.

DOI: 10.1103/PhysRevB.106.205129

I. INTRODUCTION

The multiorbital Hubbard model can be considered as a
minimal model for a wide class of strongly correlated electron
materials [1,2]. Due to the complexity of the multiorbital
Hubbard model, it is far less studied than the single-band
Hubbard model [3–6]. In finite dimensions, there are only
a limited number of studies using state-of-the-art techniques
on the multiorbital Hubbard model, such as density matrix
renormalization group (DMRG) in one dimension [7] and
variational quantum Monte Carlo in two dimensions [8,9].
Alternatively, the overwhelming majority of studies focus
on the local physics by approximating the finite-dimensional
Hubbard model with a d = ∞ counterpart. The d = ∞ Hub-
bard model represents the essential local physics of the Mott
transition, and can be formally exactly solved using the dy-
namical mean-field theory (DMFT) [10–12]. In this paper, we
restrict our attention purely to the ground-state properties at
zero temperature.

The main idea of DMFT is to map the multiorbital Hubbard
model to a self-consistently determined multiorbital Ander-
son impurity model (AIM), and the self-consistency requires
the determination of the Green’s function of the AIM. Two
main paradigms to solve the AIM at zero temperature are
Green’s function and wave function based techniques. For
Green’s function based methods, the zero-temperature formal-
ism is the most natural choice, but this approach is essentially
limited to perturbation theory [10,11]. Finite temperature
techniques based on the imaginary time Matsubara formalism
can be executed perturbatively or using numerically exact

quantum Monte Carlo (QMC) based techniques [13]. The
hybridization expansion continuous time QMC (CTQMC)
[13–15] has been extensively used to study the multiorbital
Hubbard model [16–23]. However, it is computationally ex-
pensive to extrapolate to zero temperature. Wave function
based techniques are advantageous in that they naturally ad-
dress zero temperature, although they come with their own
set of limitations. The simplest possibility is to discretize
the bath of the AIM and exactly diagonalize the truncated
Hamiltonian [24], but this approach cannot easily be improved
in practice due to the exponentially increasing computational
cost of increasing the bath size. Both numerical renormaliza-
tion group (NRG) [25–27] and density matrix renormalization
group (DMRG) [28,29] allow one to accurately approximate
a continuous bath, although each approach has limitations.
NRG uses energy as the criterion to truncate the Hamiltonian,
resulting in an exponential scaling when applied to a multi-
orbital problem [30]. There has been some success navigating
this issue, and there are several studies executing DMFT using
NRG in multiorbital problems [31–34]. Alternatively, DMRG
uses the entanglement entropy as a criteria to truncate the
Hamiltonian, and it should naturally accommodate the mul-
tiorbital problem. However, given that DMRG only computes
the ground state, additional techniques are needed to obtain
the Green’s function [35–38], which are not well-controlled
techniques in general. Despite this limitation, there have been
a limited number of applications executing DMFT using
DMRG in two-orbital problems [39–42]. In summary, nei-
ther NRG nor DMRG studies of the multiorbital AIM cover
all of parameter space (e.g., the strong interaction regime).
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Therefore, there is not yet a universal technique to efficiently
study the ground state of the multiorbital Hubbard model over
all of parameter space for d = ∞, and this seriously limits our
ability to study strongly correlated electron materials. In this
paper, we will demonstrate the VDAT fills this methodological
void.

VDAT directly solves the ground state of the Hubbard
model in d = ∞ without mapping to the AIM [43,44]. VDAT
uses a variational ansatz for the many-body density matrix,
known as the sequential product density matrix (SPD), and
the accuracy of the SPD is controlled by an integer N . Unlike
many variational ansatz, the SPD is unbiased in the sense
that it monotonically approaches the exact solution for in-
creasing N . In the context of the Hubbard model, the SPD
recovers most well known variational wave functions: N = 1
recovers Hartree-Fock, N = 2 recovers the Gutzwiller wave
function, and N = 3 recovers the Gutzwiller-Baeriswyl and
Baeriswyl-Gutzwiller wave functions. For d = ∞, VDAT can
exactly evaluate the SPD using the self-consistent canonical
discrete action (SCDA). The computational cost of VDAT
grows with N , at an exponential scaling for an exact eval-
uation and a polynomial scaling for a numerical evaluation
using Monte-Carlo, so rapid convergence with N is important
if VDAT is to be a practical alternative to DMFT. Previous
work [44] on the single orbital AIM on a ring and the d = ∞
single-orbital Hubbard model are already well converged for
N = 3 as compared to the numerically exact solution given
by DMRG and DMFT solved within NRG, respectively; with
N = 4 pushing the result even closer to the exact solution.
Given that N = 2 recovers the Gutzwiller approximation,
which is already qualitatively reasonable, the great success
of N = 3 is not unexpected. In this paper, we will demon-
strate that N = 3 maintains a high fidelity in the multiorbital
problem, with complex local interactions including the Hub-
bard U , Hund J , and crystal field �; remedying the known
deficiencies of N = 2. We explicitly show that differences
between N = 3 and N = 4 are very small, and comparison
to CTQMC extrapolated to zero temperature yields excellent
agreement. Importantly, N = 3 has a similar computational
cost to N = 2, requiring approximately one second to solve
the two-band Hubbard model on a single processor core, or-
ders of magnitude faster than DMFT solved using QMC based
techniques.

It is useful to precisely contrast VDAT within the SCDA
to DMFT. Before the development of VDAT [43,44], DMFT
was the only formalism to exactly solve the Hubbard model
in d = ∞, necessitating the use of Green’s functions even if
one is only concerned with the ground-state properties. VDAT
offers a paradigm shift, allowing the exact solution of the
ground-state properties of the d = ∞ Hubbard model within
the wave function paradigm, providing a massive computa-
tional speedup for a given accuracy. For N = 2, the SCDA
provides an alternative approach to the original proof that
the Gutzwiller wave function is exactly evaluated using the
Gutzwiller approximation in d = ∞ [45–48], but the SCDA
also exactly evaluates the SPD for N � 3. From another view-
point, the SCDA can be viewed as the integer time analog of
DMFT, given that the integer time self-energy is assumed to
be local within the SCDA. All of the aforementioned ideas
result from the same simplifications, which occur in infinite

dimensions. Just as DMFT can be used as a robust approxi-
mation of local physics in finite dimensions, the SCDA can be
applied in the analogous fashion for determining ground-state
properties. Moreover, just as DMFT can be improved in finite
dimensions using cluster dynamical mean-field theory [49],
the dynamical vertex approximation [50], dual fermions [51],
etc., VDAT can use the integer time analogues of these same
ideas.

The structure of this paper is as follows. In Sec. II, we
describe the general VDAT formalism, including the SPD
and the DAT. A derivation for the evaluation of integer time
correlation functions in the compound space is provided, and
the gauge freedom of the SPD is identified and discussed. In
Sec. III, we provide an alternate view of the SCDA in terms of
two effective discrete actions subject to self-consistency con-
straints. Furthermore, we introduce a decoupled minimization
scheme to efficiently execute the minimization of the varia-
tional parameters within the SCDA. The computational cost
of the SCDA is analyzed, and explicit results are provided. In
Sec. IV C, we provide VDAT results for the two-orbital Hub-
bard model in d = ∞ for a wide variety of parameters, and
compare with published DMFT results. Finally, we conclude
in Sec. V.

II. VARIATIONAL DISCRETE ACTION THEORY

A. SPD for lattice models

We begin by reviewing the SPD [43,44] in the context
of a lattice model with local interactions, and we consider a
corresponding Hamiltonian defined in an arbitrary lattice as

Ĥ = K̂ + Ĥloc = ε · n̂ +
∑

i

Ĥloc;i, (1)

where ε · n̂ ≡ ∑
��′[ε]��′[n̂]��′ and [n̂]��′ = â†

� â�′ and � =
1, . . . , L labels a complete, orthonormal, single-particle basis;
and Ĥloc;i is the local interaction on lattice site i. The ansatz of
VDAT is the SPD, and the G-type SPD can be motivated by
considering the following variational wave function:

|�〉 = P̂ (γ1, u1)...P̂ (γM, uM )|�0〉, (2)

where

P̂ (γ j, u j ) = exp(γ j · n̂)
∏

i

P̂i(u j ), (3)

P̂i(u j ) =
∑

�

u j,i�P̂i�, (4)

where j = 1, ..., M, the matrices γ j are Hermitian, the index
� enumerates a basis of many-body operators {P̂i�}, which
are Hermitian and local to site i, u j = {u j,i�}, and |�0〉 is
a noninteracting wave function. The basis {P̂i�} should be
chosen such that the resulting vector space covers exp(Ĥloc;i )
for arbitrary interaction parameters within Ĥloc;i (see Sec. IV A
for the choice of {P̂i�} in the two-orbital Hubbard model). The
variational parameters are γ j , u j , and the choice of |�0〉. The
integer M sets the accuracy of the variational wave function,
and M → ∞ is guaranteed to recover the exact wave function.
In order to execute the variational theory, the expectation
value 〈�|Ĥ |�〉 must be evaluated, and this is best achieved by
abstracting to a more general density matrix ansatz of which
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this wave function is a special case. We can rewrite |�〉〈�| as
a special case of the G-type sequential product density matrix
[43,44] as

�̂ = P̂ (γ1, u1) . . . P̂ (γN , uN ), (5)

where N = 2M + 1 in general or N = 2M if one restricts
to γ1 = 0 for M > 0. Notice that when we rewrite |�0〉〈�0|
as exp(γM+1 · n̂), the γM+1 has divergent matrix elements.
Therefore, it is natural to reparametrize γτ using λτ =
(1 + exp(−γτ )T )−1, and λM+1 is the single particle density
matrix of |�0〉. The variational parameters are then λ =
{λ1, . . . ,λM+1} and u = {u1, . . . , uM}, and the remaining pa-
rameters are given as λM+1+k ≡ λM+1−k , uM+k ≡ uM+1−k ,
where k > 0, with u0 chosen such that P̂i(u0) = 1̂. While we
have focused on the G-type SPD, which is used in our present
calculations, it is worth noting that there is a second class of
SPD denoted as B type [43].

The variational principle dictates that the ground-state en-
ergy is evaluated as

E = min
λu

〈Ĥ〉�̂(λ,u), (6)

where 〈Ô〉ρ̂ ≡ Tr(ρ̂Ô)/Tr(ρ̂). The accuracy of the SPD is
controlled by N , and the error will monotonically decrease
with increasing N . There are two main challenges posed by
the SPD ansatz: exactly evaluating 〈Ĥ〉�̂(λ,u) and minimizing
over the sets of variational parameters λ and u. In the case
of a d = ∞ lattice, we previously proved that the SCDA
can be used to exactly evaluate 〈Ĥ〉�̂(λ,u)[43], and here we
demonstrate that the SCDA can be executed efficiently for the
two-band Hubbard model.

It should be emphasized that the SPD is defined by the se-
quence (P̂1, . . . , P̂N ), where P̂τ ≡ P̂ (γτ , uτ ), and therefore
for N > 1 there are always distinct SPD’s that correspond
to an equivalent many-body density matrix, which we re-
fer to as gauge equivalent. The SPD gives rise to the
notion of integer time correlation functions of the form
Tr(P̂1Ô1 . . . P̂N ÔN )/Tr(�̂). While it may not be immediately
obvious why this correlation function is relevant, integer time
correlation function naturally emerge when constructing a
diagrammatic expansion and when evaluating the derivatives
of the energy with respect to the variational parameters [43].

B. The discrete action theory represented in the compound
space

The discrete action theory (DAT) is a general formalism to
evaluate integer time correlation functions of the SPD [43]. It
is convenient to represent the DAT in a compound space Hc =
⊗N

τ=1H, where H is the original Fock space. Each pair of op-
erators â†

� and â� can be promoted into Hc as N distinct pairs
of operators with integer time index τ = 1, . . . ,N , denoted
â†(τ )

� and â(τ )
� , which are defined by the canonical anticom-

mutation relations {â†(τ )
� , â(τ ′ )

�′ } = δ��′δττ ′ and {â(τ )
� , â(τ ′ )

�′ } = 0.
Any operator Ô = f ({â†

�}, {â�}) can be promoted to Hc with

time index τ as Ô
(τ ) = f ({â†(τ )

� }, {â(τ )
� }), and this implies that

promotion preserves the algebraic structure of the operator.
The utility of the compound space and promoted operators

can be seen from the following identity,

Tr(P̂1Ô1 . . . P̂N ÔN )

Tr(P̂1 . . . P̂N )
= 〈

Ô
(1)
1 . . . Ô

(N )
N

〉
�̂
, (7)

where the left-hand side of the equation is a general integer
time correlation function and the right-hand side is the corre-
sponding observable evaluated under the many-body operator
�̂ in Hc, and we refer to �̂ as the discrete action. The discrete

action is defined as �̂ ≡ Q̂
∏

τ P̂
(τ )
τ , where Q̂ is a unitary

operator in Hc defined as

Q̂ ≡ exp

( ∑
�(τ 	=τ ′ )

π

N sin (π (τ − τ ′)/N )
â†(τ )

� â(τ ′ )
�

)
. (8)

We can show that Q̂
−1

â†(τ )
� Q̂ = −â†(τ+1)

� and Q̂
−1

â(τ )
� Q̂ =

−â(τ+1)
� , where â†(N+1)

� ≡ −â†(1)
� , and thus we refer to Q̂

as the integer time translation operator, which encodes the
intrinsic time correlation of the SPD and only depends on N
(see Appendix for derivation).

The equivalence in Eq. (7) was first proved using an ex-
plicit matrix representation [43], and here we provide an
alternative proof based on a diagrammatic expansion. We first
prove that for arbitrary Ôτ ,

〈Ô1 . . . ÔN 〉1̂ = 〈
Ô

(1)
1 . . . Ô

(N )
N

〉
Q̂. (9)

Notice that 1̂ and Q̂ are noninteracting operators in the original
space and compound space, respectively, so Wick’s theorem
may be employed in both cases. Given that the promotion does
not change the algebraic structure, both expectation values
will yield the same diagrams with corresponding contractions.
Therefore, the only point to be verified is that all contractions
that appear in the diagrammatic expansion are equivalent,
which will be satisfied if〈

Â
(τ )
�;ηÂ

(τ ′ )
�′;η′

〉
Q̂ = 〈Â�;ηÂ�′;η′ 〉1̂ (10)

for all τ � τ ′, where Â�;0 ≡ â†
� and Â�;1 ≡ â�. First, one

can directly compute 〈Â�;ηÂ�′;η′ 〉1̂ = 1
2δ��′δ|η−η′|,1. Second, the

definition of Q̂ gives 〈â(τ )†
� â(τ ′ )

�′ 〉Q̂ = 1
2 sign(τ ′ − τ + 1

2 ) and

〈â(τ )
� â(τ ′ )

�′ 〉Q̂ = 0, which proves Eq. (9). Equation (9) can now

be applied in two instances using Ôτ → P̂τ and Ôτ → P̂τ Ôτ ,
respectively, and subsequently dividing the latter by the for-

mer, which will yield Eq. (7) given that P̂ (τ )
τ are bosonic and

commute with any operator in a different integer time.
Using Eq. (7), the ground-state energy under �̂ can be

equivalently evaluated in the compound space Hc as

〈Ĥ〉�̂(λ,u) = 〈Ĥ (N )〉�̂(λ,u), (11)

where the discrete action can be rearranged into a product of
a noninteracting and interacting part [43], given as

�̂(λ, u) = �̂
0
(λ)

∏
iτ

P̂
(τ )
i (uτ ), (12)

where

�̂
0
(λ) = Q̂ exp

(
−

∑
τ

ln
(
λ−1

τ − 1
)T · n̂(τ )

)
. (13)
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It should be emphasized that the partitioning in Eq. (12) is
only possible because projectors from different integer time
steps commute with each other.

A direct evaluation of Eq. (11) in the compound space has
no obvious advantage, but the methodological advantage is
that �̂

0
can be used as a noninteracting starting point and P̂

can be treated as a perturbation. Therefore, we can generalize
the usual Green’s function techniques to the integer time case
[43], and an important example is the discrete Dyson equation

g−1 − 1 = (
g−1

0 − 1
)
S, (14)

where g = 〈n̂〉�̂, g0 = 〈n̂〉�̂
0
, [n̂]�τ,�′τ ′ = â†(τ )

� â(τ ′ )
�′ , and S is the

exponential form of the integer time self-energy. The discrete
Dyson equation, which is a matrix equation of dimension of
LN × LN , exactly relates the interacting and noninteracting
integer time Green’s function via S. It should be emphasized
that the discrete Dyson equation is not equivalent to discretiz-
ing the usual Dyson equation (see Secs. IV B and IV C in
Ref. [43]).

C. Gauge freedom of SPD and VDAT

Recall that the SPD is defined by the sequence
(P̂1, . . . , P̂N ), and therefore for N > 1 there are always
distinct SPD’s that correspond to an equivalent many-body
density matrix, which we refer to as gauge equivalent. A
gauge transformation can be defined by the transformation
P̂τ → P̂ ′

τ such that P̂1 . . . P̂N = P̂ ′
1 . . . P̂ ′

N . Therefore, this
gauge freedom must be fixed in order to avoid numerical
instabilities. To illustrate the gauge freedom, we consider
an N = 2, G-type SPD �̂ = P̂1K̂2P̂†

1 and a gauge transfor-
mation P̂′

1 = P̂1N̂ and K̂ ′
2 = N̂−1K̂2(N̂†)−1, resulting in �̂′ =

P̂′
1K̂ ′

2(P̂′
1)†; where N̂ is a general noninteracting operator. The

kinetic projector and local projector are transformed into new
forms, which yields different integer time Green’s functions
and self-energies, but will yield the same static expectation
values (i.e., where all observables are measured in the last
integer time step). To consider how g and S change, consider
the the explicit example of N̂ = N̂† = exp(μ

∑
� n̂�), where g

is changed as

g′ = diag( exp (μ1), 1) g diag( exp (−μ1), 1), (15)

and S is changed as

S′ = diag(1, exp (−μ1)) S diag( exp (−μ1), 1). (16)

One possible way to constrain this gauge is by requiring |S| =
1. For the case of N = 3 G-type SPD’s, the gauge transfor-
mation has the form K̂1P̂1K̂2P̂†

1 K̂1 = K̂ ′
1P̂′

1K̂ ′
2(P̂′

1)†K̂ ′
1, yielding

two possibilities. First, we have K̂ ′
1 = K̂1 and P̂′

1 = P̂1N̂ and
K̂ ′

2 = N̂−1K̂2(N̂†)−1, yielding

g′ = diag( exp(μ1), 1, 1)gdiag( exp(−μ1), 1, 1), (17)

S′ = diag(1, exp(−μ1), 1)Sdiag( exp(−μ1), 1, 1). (18)

Second, we have K̂ ′
1 = K̂1N̂−1 and P̂′

1 = N̂P̂1 and K̂ ′
2 = K̂2,

yielding

g′ = diag(1, exp(μ1), 1)gdiag(1, exp(−μ1), 1), (19)

S′ = diag( exp(−μ1), 1, 1)Sdiag(1, exp(−μ1), 1). (20)

Both gauges may be constrained by requiring |S| = 1 and
requiring the determinants of the (1,2) and (2,1) integer time
sub-blocks of S are the negative of each other. The case of
N = 4 is discussed in the Supplemental Material [52].

III. THE SELF-CONSISTENT CANONICAL DISCRETE
ACTION THEORY

A. General formulation of the SCDA

The key idea of the SCDA [43,44] is to approximately
compute the total energy with two effective discrete actions
that are determined self-consistently, and a key feature of the
SCDA is that it becomes exact for d = ∞ [43]. The kinetic
energy is determined by ρ̂

K
, which approximates the exact

interacting projector by a noninteracting operator parameter-
ized by S = {Si}, where Si is local to site i and has dimension
NiN × NiN where Ni is the number of spin orbitals associ-
ated with site i. Alternatively, the local interaction energy is
determined by ρ̂

loc
, which approximates the noninteracting

discrete action and is parametrized by G = {Gi}, where Gi is
local to site i and has dimension NiN × NiN . Finally, S and G
are uniquely determined by the variational parameters λ and u
through the self-consistency of the local integer time Green’s
function and the discrete Dyson equation. Mathematically,
this procedure is described by

E (λ, u) = 〈K̂ (N )〉ρ̂
K

+ 〈
Ĥ

(N )
loc

〉
ρ̂

loc

, (21)

where

ρ̂
K

= �̂
0
(λ)

∏
i

exp
( − ln ST

i · n̂i

)
, (22)

ρ̂
loc

=
∏

i

(
ρ̂0

loc;i
(Gi )

∏
τ

P̂(τ )
i (uτ )

)
, (23)

where [n̂i]mτ,m′τ ′ = â†(τ )
im â(τ ′ )

im′ and m is an index, which labels
a spin orbital associated with site i, and ρ̂0

loc,i
(Gi ) = exp ( −

ln(G−1
i − 1)T · n̂i ). Finally, S and G can be determined by the

following two conditions for all i:(
g−1

i − 1
) = (

G−1
i − 1

)
Si, gi = g′

i, (24)

where gi = 〈n̂i〉ρ̂ loc
and g′

i = 〈n̂i〉ρ̂K
.

The preceding discussion fully defines the SCDA algo-
rithm, and now we consider how to evaluate the expectation
of an arbitrary operator under ρ̂

K
or ρ̂

loc
. Given that ρ̂

K
is

noninteracting, it is straightforward to evaluate the expecta-
tion value. For ρ̂

loc
, we first evaluate a local operator Ôi as

〈Ôi〉ρ̂ loc
=

∑
{�τ }

〈( ∏
τ P̂

(τ )
i�τ

)
Ôi

〉
ρ̂0

loc,i

∏
τ uτ,i�τ∑

{�τ }
〈 ∏

τ P̂
(τ )
i�τ

〉
ρ̂0

loc,i

∏
τ uτ,i�τ

, (25)
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where 〈(∏τ P̂
(τ )
i�τ

)Ôi〉ρ̂0
loc,i

and 〈∏τ P̂
(τ )
i�τ

〉ρ̂0
loc,i

can be evaluated

using Wick’s theorem, resulting in a finite polynomial in terms
of the entries of Gi. For a product of local operators on
distinct sites, we have 〈Â . . . B̂〉ρ̂

loc
= 〈Â〉ρ̂

loc
. . . 〈B̂〉ρ̂

loc
. Finally,

an arbitrary operator can be written as a sum over products
of local operators, allowing the evaluation of any observable.
However, given that S and G are implicit functions of λ and
u, taking the gradient of the energy with respect to λ and
u is nontrivial. This issue will be circumvented using the
decoupled minimization scheme presented below.

B. Decoupled minimization algorithm for the SCDA

Given that Si and Gi are constrained by the discrete Dyson
equation, one of them can be eliminated. One can begin with
either Gi or Si, and this will yield distinct but equivalent
decoupled minimization algorithms. Here we start with Gi,
and then ρ̂

loc
(u,G) can be determined from Eq. (23), which

determines gi(u,G) = 〈n̂i〉ρ̂ loc
and Eloc(u,G) = 〈Ĥ (N )

loc 〉ρ̂
loc

. Us-
ing the discrete Dyson equation, we have

Si(u,G) = (
G−1

i − 1
)−1(

gi
−1 − 1

)
. (26)

The ρ̂
K

(λ, u,G) can be determined from Eq. (22), which

determines g′
i(λ, u,G) = 〈n̂i〉ρ̂K

and K (λ, u,G) = 〈K̂ (N )〉ρ̂
K
.

Finally, we compute the total energy as E (λ, u,G) = K +
Eloc, and the constraint function is �i(λ, u,G) ≡ gi − g′

i. In
summary, the problem can be cast as

E = min E (λ, u,G)

subject to �i(λ, u,G) = 0, i = 1, . . . , Nsite
. (27)

The constraint can be implemented by assuming that g′
i and Si

are constant, allowing for a solution for Gi as

G ′
i = (1 + (

g′
i
−1 − 1

)
S−1

i )−1. (28)

The new G′
i can then be used to start a new iteration, and this

process will be iterated until self-consistency is achieved.
To minimize the variational parameters λ and u, we begin

by computing the first derivative of E (λ, u,G) with respect to
λ for a fixed � = {�i} and u, given as

dE

dλ
= ∂K

∂λ
+

∑
i

∂E

∂Gi
· ∂Gi

∂λ

∣∣
�
, (29)

where

∂E

∂Gi
· ∂Gi

∂λ

∣∣∣∣
�

≡
∑
mm′

∂E

∂[Gi]mm′

∂[Gi]mm′

∂λ

∣∣∣∣
�

. (30)

The above notation indicates how contraction is performed
between the respective tensors. Using ∂Gi

∂λ
|� = −∑

i′
∂Gi
∂�i′

·
∂�i′
∂g′ · ∂g′

∂λ
and ∂K/∂λ = ∂

∂λ
(ε · n), where for a given i and i′

the derivative identity
∂[Gi]m1m2

∂�i′
· ∂�i′

∂[Gi]m′
1m′

2

= δm1m′
1
δm2m′

2
can be

used to obtain ∂Gi/∂�i′ from ∂�i′/∂Gi, an effective potential
vK,i = ∑

i′ (∂E/∂Gi′ ) · (∂Gi′/∂�i ) can be constructed in the
compound space such that

dE

dλ
= ∂

∂λ

〈
ε · n̂(N ) +

∑
i

vK,i · n̂i

〉
ρ̂

K
(λ,S)

, (31)

where S and vK,i are held constant when taking the derivative.
This allows λ to be updated as

λ′ = argminλ

〈
ε · n̂(N ) +

∑
i

vK,i · n̂i

〉
ρ̂

K
(λ,S)

, (32)

where S and vK,i are held constant when minimizing over λ.
To compute vK , we use the automatic differentiation technique
in the forward mode. An analogous procedure can be used to
update u as

u′ = argminu

〈
Ĥ

(N )
loc +

∑
i

vloc,i · n̂i

〉
ρ̂

loc
(u,G)

, (33)

vloc,i = ∂K

∂gi
−

∑
i′i′′

∂E

∂Gi′
· ∂Gi′

∂�i′′
· ∂�i′′

∂gi
, (34)

where G and vloc,i are held constant when minimizing over
u. Finally, G, λ, and u can be updated using Eqs. (28), (32),
and (33) in each iteration, and when all quantities converge,
the constraint has been satisfied while minimizing over all
variational parameters.

1. Translation symmetry

In many cases, we will be solving a Hamiltonian that is
invariant to translation symmetry, which will dramatically
reduce the computational cost within the SCDA. Transla-
tion symmetry dictates that Gi and uτ,i� are independent
of i, and therefore we make the simplification Gi → G and
uτ,i� → uτ,�; and in this context u = {u1, . . . , uM} and uτ =
{uτ,�}. We will use k = 1, . . . , Nsite to label reciprocal lat-
tice points, i = 1, . . . , Nsite for real space lattice points, α =
1, . . . , Norb for orbitals, and σ =↑,↓ for spin; and therefore
L = 2NsiteNorb. Furthermore, the variational parameters be-
come λ = {λk}, where λk = {λ1,k, . . . ,λM+1,k} and λτ,k is a
matrix of dimension 2Norb × 2Norb, which is the (k, k) sub-
block of the matrix λτ .

The decoupled minimization algorithm for the case of
translation symmetry is summarized as follows. In each itera-
tion, we start with λ, u,G, and for any site i we have

ρ̂
loc;i

(u,G) = ρ̂0
loc;i

(G)
∏
τ

P̂
(τ )
i (uτ ). (35)

We can then compute the local integer time Green’s func-
tion gloc(u,G) = 〈n̂i〉ρ̂ loc;i

, the interaction energy Eloc(u,G) =
Nsite〈Ĥ (N )

loc;i〉ρ̂ loc;i
, and the exponential form of the integer time

self-energy

Sloc(u,G) = (G−1 − 1)−1
(
gloc

−1 − 1
)
. (36)

For each k point, we define

ρ̂
K,k

(λk, u,G) = Q̂ exp

(
−

∑
τ

ln
(
λ−1

τ,k − 1
)T · n̂(τ )

k

)

× exp
( − ln ST

loc · n̂k

)
, (37)

and compute the integer time Green’s function
g′

k (λk, Sloc) = 〈n̂k〉ρ̂K,k
, the local integer time Green’s

function g′
loc(λ, u,G) = N−1

site

∑
k g′

k, the kinetic energy
K (λ, u,G) = ∑

k〈εk · n̂(N )
k 〉ρ̂

K,k
, and the constraint
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�(λ, u,G) = gloc − g′
loc. The iteration procedure to update G

becomes

G ′ = (1 + (
g′

loc
−1 − 1

)
S−1

loc )−1. (38)

Similarly, λ can be updated as

λ′
k = argminλk

〈
εk · n̂(N )

k + vK · n̂k

〉
ρ̂

K,k
(λk ,Sloc ), (39)

where vK = 1
Nsite

∂E
∂G · ∂G

∂�
. The update for u simplifies to

u′ = argminu

〈
Ĥ

(N )
loc,i + vloc · n̂i

〉
ρ̂

loc;i
(u,G), (40)

vloc = 1

Nsite

(
∂K

∂gloc
− ∂E

∂G · ∂G
∂�

· ∂�

∂gloc
,

)
. (41)

For the special case of N = 2, which recovers the usual
Gutzwiller approximation, this decoupled minimization algo-
rithm can be simplified. First, [λ1,k]ασ,α′σ ′ = 1

2δαα′δσσ ′ and
λ2,k is chosen as the single-particle density matrix of the
noninteracting Hamiltonian at k. Second, the self-consistency
can be fulfilled a priori by choosing G = 〈n̂i〉�̂0

(λ) if one

enforces 〈n̂(2)
i 〉�̂

0
(λ) = 〈n̂(2)

i 〉ρ̂
loc

[43]. In this case, only u must
be updated during each iteration. Alternatively, both G and u
would need to be updated.

IV. THE TWO-BAND HUBBARD MODEL WITH N = 2, 3, 4

A. Hamiltonian for the two-band Hubbard model and the SPD

In this paper, we focus on the two-orbital Hubbard model
on the Bethe lattice in d = ∞. The local portion of the
Hamiltonian consists of the crystal field splitting and the
Slater-Kanamori parametrization of the local interaction,
given as

Ĥloc;i = �
∑

σ

(n̂i1σ − n̂i2σ ) − μ
∑
ασ

n̂iασ

+ UÔi1 + U ′Ôi2 + (U ′ − J )Ôi3 − JÔi4, (42)

where

Ôi1 =
∑

α=1,2

n̂iα↑n̂iα↓, (43)

Ôi2 =
∑

σ

n̂i1σ n̂i2σ̄ , Ôi3 =
∑

σ

n̂i1σ n̂i2σ , (44)

Ôi4 = (
â†

i1↓âi1↑â†
i2↑âi2↓ + â†

i1↓âi2↑â†
i1↑âi2↓ + H.c.

)
, (45)

where � is the crystal field, U and U ′ = U − 2J are on-site
intraorbital and interorbital Coulomb interactions, respec-
tively, and J is the Hund coupling (see [52] for eigenvalues
and eigenvectors of the local Hamiltonian).

It is instructive to deduce the limiting behavior of U , J ,
and � for a given hopping parameter t , some of which has
been discussed previously [17]. For small values of U and
J where the system is not strongly polarized (i.e., n1σ 	→ 0),
the susceptibility ∂n1σ /∂� is dictated by the noninteracting
Hamiltonian. For large U and small �, the system is insu-
lating and J/� will determine the nature of the insulator.
There will be a competition between the spin triplet state
with energy U − 3J and the spin singlet state with energy
U − √

4�2 + J2, and a transition will occur for �c = √
2J .

For � < �c, the system will be in the triplet state and nασ =

1
2 , and for � > �c the system will be in the singlet state
where n1σ = (1/2 − �/

√
4�2 + J2). For � = �c, the singlet

state will have n�
1σ = 1/2 − √

2/3 ≈ 0.0286. For small J/�,
we have n1σ = J2/(16�2) + . . . . Finally, for small U and J
where the system is strongly polarized (i.e., n1σ → 0), there
will be a competition between the kinetic energy and the
local interactions. The kinetic energy will scale like tn1σ and
the dominant interaction energy will scale like J

√
n1σ , and

therefore a metal-insulator transition (MIT) phase boundary
n1σ ∝ J2/t2 should be anticipated.

The interacting projector of the SPD [Eq. (4)] is defined
using P̂i� , with � = 1, . . . , 18, and the first 16 are

P̂i� =
∏
ασ

(�ασ n̂ασ + (1 − �ασ )(1 − n̂ασ )), (46)

where �ασ ∈ {0, 1} and are determined from the binary
relation (�1↑�1↓�2↑�2↓)2 = � − 1 (see [52] for explicit ex-
pressions). The remaining two operators are given as

P̂i17 = â†
i1↑âi1↓â†

i2↓âi2↑ + H.c., (47)

P̂i18 = â†
i1↑âi2↓â†

i1↓âi2↑ + H.c. (48)

For the noninteracting projector, we use Nsite = 40, which
proved to be sufficiently converged.

B. Computational complexity of the SCDA

The power of VDAT within the SCDA is that it can be
exactly evaluated for d = ∞ at a very small computational
cost, and here we examine the computational complexity. For
simplicity, we focus on the case with translation symmetry,
outlined in Sec. IIIB1. Within a given iteration of the SCDA,
there are two relevant scalings to consider: the aspects relevant
to ρ̂

K,k
(λ, Sloc) and ρ̂

loc
(u,G). For the former, the complexity

scales linearly in Nsite and polynomially in NorbN . For the
latter, the complexity is independent of Nsite and scales expo-
nentially in NorbN . Normally, the exponential scaling will be
the limiting factor, and therefore we focus on showcasing the
cost in specific examples for the two-orbital Hubbard model.

For a given Norb and N , there are three relevant tasks for
evaluating expectation values under ρ̂

loc
(u,G). First, given an

input u and G, the gloc and Eloc must be computed. Second,
the vK and vloc require the computation of the first derivatives
∂gloc/∂G and ∂Eloc/∂G. Third, Eq. (40) must be minimized
with respect to u, requiring the computation of the polynomial
coefficients of gloc and Eloc in u given in Eq. (25). For each
task, the compiled machine code size and the execution time
is provided for N = 2, 3, 4 in Table I. The machine code size
is proportional to the number of instructions, which need to be
executed. We provide the execution time for Norb = 2 using a
single processor core, demonstrating that the compute time is
approximately proportional to the machine code size. The tiny
computational times on this modest computational resource
illustrates the power of VDAT for the two-orbital Hubbard
model. Indeed, all VDAT results generated in this study were
executed using a single processing core. It should be noted
that N = 2 and N = 3 are on the same scale, which is true
for all N = 2M and N = 2M + 1 for M > 0, and this can be
understood from the fact that these two cases share the same
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TABLE I. Computational cost for various tasks within the SCDA for the two-orbital Hubbard model at different N . Each of the three tasks
is defined in the main text. The compiled machine code size of the corresponding function and the execution time on a single processor core is
provided.

Task1 Task 2 Task 3

N Time (s) Size (Mb) Time (s) Size (Mb) Time (s) Size (Mb)

2 2 × 10−5 1.3 × 10−1 6 × 10−5 5.1 × 10−1 4 × 10−5 2.7 × 10−1

3 7 × 10−5 5.2 × 10−1 3 × 10−4 3.3 2 × 10−4 1.9
4 4 × 10−2 2.6 × 102 5 × 10−1 3.0 × 103 8 × 10−2 7.2 × 102

number of interacting projectors. Given that the minimization
over all variational parameters can be achieved on the order of
10 iterations, the total computation time for N = 4 is roughly
estimated by the cost of task 2 times 10, yielding ≈5 seconds.
The total computation time for N � 3 is less than one second,
and it is dominated by aspects relevant to ρ̂

K,k
(λ, Sloc).

To better understand the scaling for aspects relevant to
ρ̂

loc
(u,G), it useful to think in terms of the number of effective

orbitals Neff, which is the number of spin orbitals in the com-
pound space that have a nontrivial interacting projector. For
example, for Norb = 2 at N = 2 − 3 we have Neff = 8, while
for N = 4 − 5 we have Neff = 16. The computational time t
for a given task scales exponentially with Neff, so we approx-
imately have t = c0cNeff

1 , and using the results from Table I
for task 1 with N = 2 and N = 4, we estimate c0 = 10−8

seconds and c1 = 2.6. Using this simple parametrization, we
can estimate the time required for Norb = 5 and N = 2 − 3,
where Neff = 20, resulting in t = 1.8 seconds on a single core.
In the absence of any symmetry, there will be on the order of
210 variational parameters, which will need to be minimized.
Overall, it appears that generally treating d orbitals with the
present algorithm should be tractable for N � 3. We can also
estimate the time required for Norb = 7 and N = 2 − 3, where
Neff = 28, resulting in t = 3.6 × 103 seconds on a single core.
In the absence of symmetry, there will be on the order of
214 variational parameters. Therefore, it appears that generally
treating f electrons will require parellelization, which can be
achieved in a number of ways. Perhaps the simplest approach
would be to perform a generalized Hubbard-Stratonovich
transformation, recasting the interacting projectors into a sum
of noninteracting projectors, and allowing the evaluation of
Eq. (25) in a perfectly parallel fashion; dividing the task 1 cost
of t = 3.6 × 103 by the number of available cores. Therefore,
generally treating f electrons for N � 3 using reasonable
computational resources appears completely tractable.

C. Results

We now illustrate VDAT for the two-orbital Hubbard
model in d = ∞, where the SCDA exactly evaluates the SPD.
Our VDAT results stand alone in the sense that the results
monotonically approach the exact solution as N increases.
However, we also compare to published DMFT results using
the CTQMC algorithm to solve the DMFT impurity prob-
lem, which recovers the numerically exact results at a finite
temperature [17]. Given that our VDAT results are at zero tem-
perature, one must compare to the finite-temperature DMFT
results with caution, as the insulating regime will be rather
sensitive to temperature. We will focus on the half-filled

case of two electrons per site in the paramagnetic state (i.e.,
n1σ + n2σ = 1).

We begin by considering the all of the different compo-
nents of the energy at � = 0 for a broad range of J and
U . The total energy is computed using N = 2, 3, 4 with
J/U = 0, 0.1, 0.25 over a dense grid of U/t ∈ [0, 10] [see
Fig. 1(a)]. In order to facilitate comparison, we plot the
difference in the total energy and the atomic energy, where
the latter is E (0,U, J ) = U − 3J . For a given U and J , the
total energy strictly decreases as N increases, as is required by
the variational principle. The N = 2 result recovers the usual
Gutzwiller approximation, and yields an insulator, which is
simply a collection of atoms. Clearly, N = 3 produces a sub-
stantial quantitative improvement over N = 2, in addition to
a realistic insulating state, which allows for virtual hopping.
The N = 4 result only produces a small quantitative change
as compared to N = 3, demonstrating that both N = 3 and
N = 4 are close to the exact solution. We now focus on the
qualitative nature of the MIT. For J/U > 0, a clear kink in
the total energy as a function of U/t can be observed for all
N , indicating a first-order MIT. For N = 3, we illustrate the
metastable regime by initiating calculations from both metal-
lic and insulating solutions [see Fig. 1(a) inset]. Alternatively,
for J/U = 0, the MIT is continuous for all N . For N = 2,
our results are consistent with previous findings using the
Gutzwiller approximation [53]. For N � 3 and J/U > 0, the
fact that the first order transition survives is consistent with
DMFT calculations, which used DMRG [54] or NRG [31]
solvers.

It is also interesting to separately consider the kinetic
and interaction energy [see Figs. 1(b) and 1(c), respectively],
which probe the derivative of the total energy with respect
to t and U (assuming fixed J/U ), respectively. The kinetic
energy increases with increasing N in the metallic regime
and decreases in the insulating regime. The opposite behavior
is observed for the interaction energy. Additionally, a clear
discontinuity can be observed at the MIT for J/U > 0, as the
MIT is first order, whereas a kink is observed for J/U = 0 as
the MIT is continuous.

In order to understand the competition between U and J , it
is useful to study the individual components of the interaction
energy, defined in Eqs. (43)–(45), and we plot each as a
function of U/t for various J/U (see Fig. 2). The 〈Ô1〉, 〈Ô2〉,
and 〈Ô4〉 all change monotonically as a function of U , dictated
by the sign of the respective coupling coefficients in the local
Hamiltonian, while 〈Ô3〉 is nonmonotonic in U for finite J/U .
In the small U regime, the 〈Ô3〉 decreases, commensurate
with the respective coupling coefficient, while in the large U
regime it increases due to the prominence of the triplet states.
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FIG. 1. Zero-temperature energetics as a function of U/t for
various J/U at � = 0 in the two-band Hubbard model for the d = ∞
Bethe lattice at half filling. VDAT results for N = 2, 3, 4 are pro-
vided. (a) The total energy difference �E (t,U, J ) = E (t,U, J ) −
E (0,U, J ), where E (t,U, J ) is the total energy per site. Inset shows
metastable region for N = 3 at J/U = 0.1. (b) Kinetic energy per
site K = 〈K̂〉/Nsite. (c) Interaction energy difference �Eloc(t,U, J ) =
Eloc(t,U, J ) − Eloc(0,U, J ), where Eloc(t,U, J ) is the interaction en-
ergy per site

We now proceed to more thoroughly explore nonzero �,
and we begin by examining n1σ as a function of �/t at rela-
tively large values of U/t = 6, 9 for various J/U (see Fig. 3),
which can be compared to previous DMFT calculations [17].
We begin by making general observations about the large U/t
insulating regime, where the case of J = 0 and J > 0 are
qualitatively different [see Fig. 3(a)]. For J/U = 0, the sys-
tem has an approximately constant orbital susceptibility for
� < �c and is fully polarized for � > �c, where �c ≈ t2/U .
We refer to these two regions as partially and fully orbitally
polarized insulators, respectively. For J/U > 0, the orbital
susceptibility is zero for � < �c1 , approximately constant for
�c1 < � < �c2 , and determined from n1σ ≈ J2/(16�2) for
� > �c2 ; where �c1 ≈ √

2J and �c2 ≈ �c1 + t2/U . We refer

FIG. 2. Local two particle correlation functions as a function of
U/t for various J/U at � = 0 in the two-band Hubbard model for
the d = ∞ Bethe lattice at half filling. VDAT results for N = 2, 3, 4
are provided. Panels (a)–(d) are expectation values of the operators
defined in Eqs. (43)–(45).

to these three regions as zero, partially, and largely orbitally
polarized Mott insulators. The underlying physics of these
different regions has been discussed previously [17], but the
nature of the transition between these regions at zero temper-
ature has not been resolved.

At U/t = 9, the system is insulating for all values of
�/t and J/U [see Fig. 3(a)]. Interestingly, the polarization
(i.e., n2σ − n1σ ) at the transition point between the par-
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FIG. 3. The occupancy n1σ as a function of � for various J/U at
a given U/t in the two-band Hubbard model for the d = ∞ Bethe lat-
tice at half filling. VDAT results are presented for N = 3, in addition
to published DMFT (CTQMC) results [17] at various temperatures.
(a) Results for U/t = 9; all VDAT and DMFT results are insulators;
thick-green lines are extrapolations of the DMFT results to zero
temperature (see text for details). (b) VDAT results for U/t = 9 at
larger values of J/U , where the x axis is shifted by

√
2J/t . Solid

lines are insulators, while the dashed line is a metal. (c) Results for
U/t = 6. Solid (hollow) DMFT points are insulating (metallic), and
red (blue) VDAT lines are insulating (metallic).

tially and largely orbitally polarized insulators is roughly
independent of J and U , and occurs at n1σ ≈ n�

1σ = 1/2 −√
2/3 ≈ 0.0286. In contrast to J = 0, for finite J the

system will not fully polarize for finite �. The previously

published DMFT results are strongly affected by temper-
ature, as illustrated by the calculations for J/U = 0.01 at
βt = 12.5, 25, 50, 100. We extrapolate the DMFT results to
βt → ∞, which agrees well with our zero temperature N =
3 results for the zero and partially orbitally polarized in-
sulators, while the DMFT results were not computed for
the largely orbitally polarized insulator. For J/U = 0, only
βt = 50 was computed with DMFT, and we approximately
extrapolate their results to zero temperature by approximating
the entropy. The crystal field for a given n1σ can be com-
puted from the free energy as �T = −(1/4)∂F (T, n1σ )/∂n1σ ,
where F (T, n1σ ) = E (T, n1σ ) − T S(T, n1σ ) and E (T, n1σ ) is
the Legendre transform of the total energy with respect to
� where the polarization is parametrized in terms of n1σ .
We assume that E (0, n1σ ) ≈ E (T, n1σ ) for small T , so the
zero-temperature crystal field can be approximated as �T =0 =
−(1/4)∂E (T, n1σ )/∂n1σ . To estimate S(T, n1σ ), we use the
atomic limit to approximate S(T, 1/2) ≈ ln 6 and S(T, 0) =
0. Given the symmetry between n1σ and n2σ , we assume that
S(T, n1σ ) is quadratic about n1σ = 1/2, and thus we approx-
imate S(T, n1σ ) ≈ (1 − 4(n1σ − 1

2 )2) ln 6, yielding �T =0 −
�T ≈ 2 ln 6(n1σ − 1

2 )T . The green curve removes this finite-
temperature contribution from the DMFT result, yielding
excellent agreement with our N = 3 result. For J = 0, the
temperature effect is straightforward: for n1σ < 1/2, we have
�T =0 < �T due to the fact that finite temperature favors
the high-entropy state with zero polarization. However, for
J > 0, the effect of temperature is clearly more subtle. We
see temperature plays opposite roles in the small and large
orbital polarization regime. It is also interesting to explore
larger values of J/U [see Fig. 3(b)], and for a convenient
comparison, we shift the x axis by

√
2J/t . As J/U increases,

the orbital susceptibility decreases, and the transition from
the partially to largely orbitally polarized Mott insulator is
first order for J/U = 0.1, 0.15. For J/U = 0.25 the crys-
tal field drives a first-order MIT from a partially orbitally
polarized Mott insulator to a metal followed by another first-
order MIT to a largely orbitally polarized Mott insulator.
At U/t = 6 [see Fig. 3(c)], the results contain both metallic
and insulating phases, and VDAT can faithfully capture the
details of the metal-insulator transition. The differences be-
tween VDAT and DMFT are relatively small in this case, and
are likely attributable to the finite temperature of the DMFT
calculations.

The previous results focused more on the large U/t regime,
and here we explore a broad range of U/t for various val-
ues of J/U and �/t (see Fig. 4). Overall, there is excellent
agreement with DMFT in the metallic region, while there
are nontrivial differences in the insulating regime, which are
likely due to the finite temperature of the DMFT calculations.
The zero-temperature extrapolation of the DMFT results for
U/t = 9 and J/U = 0.01 and �/t = 0.2 from Fig. 3(a) is
plotted as a green point in Fig. 4(a), showing good agree-
ment with our VDAT results. Interestingly, at �/t = 0.6 and
J/U = 0.05 [see Fig. 4(b)], increasing U/t drives a transition
from a metal to a largely orbitally polarized Mott insulator,
which then transitions to a partially orbitally polarized Mott
insulator followed by a zero orbitally polarized Mott insulator.
Similar behavior is observed for �/t = 1.0 and J/U = 0.1
[see Fig. 4(c)], though the system becomes has an additional
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FIG. 4. The occupancy n1σ as a function of U/t for various J/U
at a given �/t in the two-band Hubbard model for the d = ∞
Bethe lattice at half filling. VDAT results are presented for N = 3,
in addition to published DMFT (CTQMC) results at βt = 50 [17].
VDAT results for J/U = 0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25 are
provided in each panel (select curves are labeled), and corresponding
DMFT results are provided where available (arrows are used when
the correspondence is unclear). Red (blue) VDAT lines are insulating
(metallic), while black solid (hollow) DMFT points are insulating
(metallic); and the green DMFT point is an extrapolation to zero
temperature (see text for details). (a) �/t = 0.2; (b) �/t = 0.6; and
(c) �/t = 1.

first-order transition from the largely orbitally polarized Mott
insulator to a metal before transitioning to the partially or-
bitally polarized Mott insulator.

In order to obtain a detailed understanding over the en-
tire phase space of parameters, we evaluate the quasiparticle
weight as function of U/t and n1σ for various J/U , which
serves as a phase diagram of the metal-insulator transition

(see Fig. 5 ). Additionally, a Maxwell construction is used to
determine if a given value of n1σ is stable with respect to �,
and hatched lines are used to denote unstable regions. We used
two resolutions for the phase diagram: 0.1 in U/t and 0.01
in n1σ for n1σ > 0.05, and 0.01 in U/t and 0.001 in n1σ for
n1σ < 0.05, yielding a total of 55 000 calculations per phase
diagram, and this level of resolution would be formidable us-
ing DMFT. In the region of large polarization (i.e., n1σ → 0),
the kinetic energy is approaching zero, making the conver-
gence of the calculation challenging; this region would be
best explored by treating n1σ as a perturbation parameter, but
we leave this for future work. For J/U = 0 [see Fig. 5(a)],
at n1σ = 1/2 there is a MIT at U/t = 9.1, and the transition
value of U/t decreases monotonically for decreasing n1σ . In
the large polarization limit where n1σ → 0, there is a band-
insulator to fully polarized Mott insulator transition at finite
U/t . Furthermore, for 2.3 � U/t � 8 there is a first-order
MIT driven by � (denoted by hatching), and three regimes
can be seen. For the smallest U/t region, there is a metal
to band insulator transition; for intermediate U/t , there is a
metal to fully orbitally polarized Mott insulator transition; for
largest U/t , there is a metal to partially orbitally polarized
Mott insulator transition.

For J/U > 0 [see Figs. 5(b)–5(f)], the metal to insulator
transition value of U/t is no longer a monotonic function
of n1σ . There is a first-order insulator to metal transition
in � around n1σ = 1/2, and the range increases with J/U .
For sufficiently large J/U in the large polarization region,
the zero-quasiparticle weight boundary coincides with the
first-order phase boundary. Additionally, there is an approx-
imately vertical boundary between the partially and largely
orbitally polarized Mott insulators, which becomes first order
for sufficiently large J/U . Finally, the quasiparticle weight
decreases as n1σ → 0 for all U/t > 0, and this is most easily
seen for the larger values of J/U . This behavior is expected
given our scaling analysis in Sec. IV A, which suggests that
for n1σ < αJ2 the quasiparticle weight is zero, where α is a
positive constant. Given the numerical difficulty for treating
small values of n1σ (i.e., n1σ < 0.01), it would be preferable
to explore this regime treating n1σ as a small parameter, which
would allow for an analytic evaluation using N = 3. Such
an exercise would clearly answer whether or not the Mott
insulator exists for infinitesimal U/t with fixed J/U > 0 in the
large polarization limit. Nonetheless, the presence of strong
electronic correlations in the largely polarized regime is clear.
Therefore, crystals bearing d electrons or f electrons, which
are nominally a band insulator, according to experiment or
density functional theory, may in reality be in this largely
polarized regime, which has nontrivial electronic correlations.
In future work, we will investigate the doping dependence of
this regime.

V. CONCLUSIONS AND FUTURE OUTLOOK

In this paper, we applied the recently developed VDAT
within the SCDA to the two-orbital Hubbard model in d =
∞. The SCDA is a self-consistent algorithm to compute the
total energy under the SPD using an iterative approach, and
this poses a serious technical challenge of how to efficiently
compute the derivatives of the total energy with respect to
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FIG. 5. VDAT N = 3 results for the quasiparticle weight Z as a function of n1σ and U/t for various J/U in the two-band Hubbard model
for the d = ∞ Bethe lattice at half filling. The quasiparticle weight is zero when the color is grey. The black-hatched lines indicate unstable
regions. The vertical-green lines at n1σ = 1/2 − √

2/3 ≈ 0.0286 indicate the boundary between the partially and largely orbitally polarized
Mott insulator for U/t → ∞. For J/U = 0.1, the zero, partially, and largely orbitally polarized Mott insulating regimes are labeled.

the variational parameters. We surmounted this challenge us-
ing an iterative decoupled minimization algorithm. At each
iteration, the variational parameters are updated using a
local effective model and a collection of independent effective
models for the k points, and the SCDA self-consistency is
maintained using a fixed point method. In addition to this min-
imization algorithm, two formal developments were made to
VDAT. First, we provided a diagrammatic proof of the equiv-
alence of integer time correlation functions under the SPD to
corresponding observables measured in the compound space.
Second, we identified the gauge symmetry of the SPD, and
we proposed various schemes for fixing the gauge freedom,
which is of practical importance for stabilizing the minimiza-
tion within the SCDA.

Using the aforementioned formal and technical develop-
ments, we studied the half-filled two-orbital Hubbard model
in d = ∞ over a broad range of parameter space in U/t ,
J/U , and �/t at zero temperature. The computational cost of
VDAT for this model is negligible, requiring approximately
one second on a single processor core at N = 3 to solve the
model for a given U/t , J/U , and �/t . At � = 0, we evaluated
N = 2, 3, 4, where N = 2 recovers the Gutzwiller approx-
imation, and the results for N = 3, 4 only exhibited very
small differences, suggesting the results are largely converged
with respect to N . Given that increasing N monotonically
approaches the exact solution, N = 3, 4 should be close to the
exact solution, and therefore N = 3 should serve as a standard
theory of Mott and Hund physics in the d = ∞ Hubbard

model. VDAT for N > 2 confirms the previous Gutzwiller
results (i.e., N = 2) that the U driven MIT for � = 0 (i.e.,
n1σ = 1/2) and J > 0 is first order, and is continuous for
J = 0. For � > 0 and J > 0, VDAT for N = 3 confirms
previous finite temperature DMFT results of a zero-orbital
susceptibility region for � �

√
2J , and confirms previous

conjectures that the transition to finite susceptibility is sharp at
zero temperature [17]. At intermediate values of U/t and suf-
ficiently large values of J/U , there exists a first-order � driven
MIT going from a zero orbitally polarized Mott insulator to a
partially polarized metal, followed by a first-order transition to
either a partially or largely orbitally polarized Mott insulator.
For large U/t , there is a � driven transition from a partially to
a largely orbitally polarized Mott insulator, and this transition
appears to be continuous at small J/U and first order at large
J/U . Finally, for nonzero J/U , the quasiparticle weight de-
creases as n1σ → 0 for all nonzero U/t , and this VDAT result
is consistent with scaling arguments in the large polarization
limit. Detailed phase diagrams of the quasiparticle weight as
a function of n1σ and U/t are presented at an unprecedented
resolution. In summary, VDAT uncovered qualitative physics,
which had not yet been resolved, and this is due to the fact
that VDAT operates at zero temperature and exactly evaluates
the SPD ansatz for arbitrary U , J , and �.

Analogous to DMFT, VDAT within the SCDA can be
straightforwardly applied in finite dimensions as a local ap-
proximation. Therefore, VDAT within the SCDA at N = 3
will likely become a de facto standard for probing the local
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physics of multiband Hubbard models at zero temperature,
delivering the quality of DMFT at a cost not far beyond the
Gutzwiller approximation. An obvious next step will be to
combine VDAT within the SCDA with DFT, in the same
spirit of DFT plus Gutzwiller [55]. DFT+VDAT(N = 3)
will have similar quality to DFT+DMFT at a cost similar
to DFT+Gutzwiller, and DFT+VDAT will have distinct ad-
vantages over DFT+DMFT in that it naturally accesses zero
temperature.

Another important future direction will be executing
VDAT within finite dimensions. There are various approaches
to extend DMFT to finite dimensions, such as cluster DMFT
[2,49], dual Fermions [50], the dynamical vertex approxi-
mation [50], etc., and it is clear that integer time analogues
can be pursued within VDAT. Given the massive speedup of
VDAT within the SCDA relative to DMFT, it seems likely
that there will be a similar speedup when applying VDAT to
finite dimensions. Therefore, it seems possible that the SPD
at N = 3 and beyond can be precisely evaluated using VDAT
in finite dimensions, allowing for a zero-temperature solution
that would compete with all existing state-of-the-art methods
for the single-band Hubbard model [6].
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APPENDIX

Here we review some key properties of noninteracting
many-body density matrices and derive an explicit expres-
sion for Q̂. Consider a generalized noninteracting many-body
density matrix ρ̂0 = exp(v · n̂), where ρ̂0 is generalized in the
sense that v is an arbitrary matrix. The following set of identi-
ties are useful when evaluating the noninteracting integer time
Green’s function:

ρ̂−1
0 â†

i ρ̂0 =
∑

i′
[S0]ii′ â

†
i′ , (A1)

ρ̂0â†
i ρ̂

−1
0 =

∑
i′

[
S−1

0

]
ii′ â

†
i′ , (A2)

ρ̂−1
0 âiρ̂0 =

∑
i′

âi′
[
S−1

0

]
i′i, (A3)

ρ̂0âiρ̂
−1
0 =

∑
i′

âi′ [S0]i′i, (A4)

where S0 = exp(−vT ). In order to prove Eq. (A1), we first
prove that it holds for an infinitesimal ṽ by directly evaluating

exp (−ṽ · n̂)â†
i exp (ṽ · n̂) = â†

i + [â†
i , ṽ · n̂]

= â†
i −

∑
i′

[ṽ]i′iâ
†
i′ =

∑
i′

[S̃0]ii′ â
†
i′ , (A5)

where S̃0 = exp(−ṽT ). For a finite v, consider ṽ = v/N and
iteratively apply Eq. (A5) N times with N → ∞, which
proves Eq. (A1). Equations (A2)–(A4) can then be de-
rived from Eq. (A1). Using the preceding identities, we
can derive

Tr(ρ̂0â†
i â j )

Tr(ρ̂0)
=

[
1

1 + S0

]
i j

. (A6)

We now proceed to derive an explicit expression
for Q̂, and to simplify notation we consider L = 1,
although the derivation is general. We begin by ex-
plicitly evaluating gQ using Eq. (93) in Ref. [43],
resulting in

[gQ]ττ ′ = 1

2
sign

(
τ ′ − τ + 1

2

)
. (A7)

Using Eqs. (112) and (113) from Ref. [43], we obtain

Q̂ = exp
(− ln

(
ST

Q

) · n̂
) = exp (ln (SQ) · n̂), (A8)

where SQ = g−1
Q − 1, and the matrix elements are

[SQ]ττ ′ = −δτ+1,τ ′ + δτ−N+1,τ ′ , (A9)

which implies S−1
Q = ST

Q = S†
Q and Q̂

† = Q̂
−1

. We can now
compute

ln SQ =
∑

ω

ln (−λω )vωvT
ω , (A10)

where ω = 2π
N m and m = 1, 2, . . . ,N and λω = exp(i(ω −

π
N )) and

vω = 1√
N

(
1, λ1

ω, . . . , λN−1
ω

)T
. (A11)

The matrix elements of ln SQ can then be evaluated as

[ln SQ]ττ ′ = i

N
∑

ω

(
ω − π

N − π
)
λτ−τ ′

ω (A12)

=
{

0 τ = τ ′
π
N

1
sin (π (τ−τ ′ )/N ) τ 	= τ ′ . (A13)

Finally, using Eqs. (A1)–(A4) and Eq. (A9), we obtain

Q̂
−1

â†(τ )Q̂ = −â†(τ+1), (A14)

Q̂â†(τ )Q̂
−1 = −â†(τ−1), (A15)

Q̂
−1

â(τ )Q̂ = −â(τ+1), (A16)

Q̂â(τ )Q̂
−1 = −â(τ−1), (A17)

where we define â†(N+1)
� ≡ −â†(1)

� and â†(0)
� ≡ −â†(N )

� .

[1] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70,
1039 (1998).

[2] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865
(2006).

[3] A. Montorsi, The Hubbard Model - A Reprint Volume (World
Scientific, Singapore, 1992)

[4] F. Gebhard, The Mott Metal-Insulator Transition - Models
And Methods (Springer Science and Business Media, Berlin,
1997).

205129-12

https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/RevModPhys.78.865


PRECISE GROUND STATE OF MULTIORBITAL MOTT … PHYSICAL REVIEW B 106, 205129 (2022)

[5] F. H. L. Essler, H. Frahm, F. Gohmann, A. Klumper, and V. E.
Korepin, The One-Dimensional Hubbard Model (Cambridge
University Press, Cambridge, 2005).

[6] J. P. E. Le Blanc, A. E. Antipov, F. Becca, I. W. Bulik, G.
Chan, C. M. Chung, Y. J. Deng, M. Ferrero, T. M. Henderson,
C. A. Jimenez-hoyos, E. Kozik, X. W. Liu, A. J. Millis, N. V.
Prokof’ev, M. P. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov,
L. F. Tocchio, I. S. Tupitsyn et al., Phys. Rev. X 5, 041041
(2015).

[7] N. Kaushal, J. Herbrych, A. Nocera, G. Alvarez, A. Moreo,
F. A. Reboredo, and E. Dagotto, Phys. Rev. B 96, 155111
(2017).

[8] L. F. Tocchio, F. Arrigoni, S. Sorella, and F. Becca, J. Phys.:
Condens. Matter 28, 105602 (2016).

[9] C. De Franco, L. F. Tocchio, and F. Becca, Phys. Rev. B 98,
075117 (2018).

[10] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[11] G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).
[12] D. Vollhardt, Ann. Phys. 524, 1 (2012).
[13] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.

Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
[14] P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J.

Millis, Phys. Rev. Lett. 97, 076405 (2006).
[15] K. Haule, Phys. Rev. B 75, 155113 (2007).
[16] P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006).
[17] P. Werner and A. J. Millis, Phys. Rev. Lett. 99, 126405 (2007).
[18] P. Werner, E. Gull, M. Troyer, and A. J. Millis, Phys. Rev. Lett.

101, 166405 (2008).
[19] A. I. Poteryaev, M. Ferrero, A. Georges, and O. Parcollet, Phys.

Rev. B 78, 045115 (2008).
[20] P. Werner, E. Gull, and A. J. Millis, Phys. Rev. B 79, 115119

(2009).
[21] T. Kita, T. Ohashi, and N. Kawakami, Phys. Rev. B 84, 195130

(2011).
[22] S. Hoshino and P. Werner, Phys. Rev. Lett. 115, 247001

(2015).
[23] S. Ryee, M. J. Han, and S. Choi, Phys. Rev. Lett. 126, 206401

(2021).
[24] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545

(1994).
[25] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[26] K. G. Wilson, Rev. Mod. Phys. 55, 583 (1983).
[27] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
[28] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[29] U. Schollwöck, Ann. Phys. 326, 96 (2011).

[30] R. Peters, Phys. Rev. B 84, 075139 (2011).
[31] T. Pruschke and R. Bulla, Eur. Phys. J. B 44, 217 (2005).
[32] K. M. Stadler, Z. P. Yin, J. von Delft, G. Kotliar, and A.

Weichselbaum, Phys. Rev. Lett. 115, 136401 (2015).
[33] F. B. Kugler, Seung-Sup B. Lee, A. Weichselbaum, G. Kotliar,

and J. von Delft, Phys. Rev. B 100, 115159 (2019).
[34] F. B. Kugler, M. Zingl, H. U. R. Strand, Seung-Sup B. Lee, J.

von Delft, and A. Georges, Phys. Rev. Lett. 124, 016401 (2020).
[35] T. D. Kuhner and S. R. White, Phys. Rev. B 60, 335 (1999).
[36] E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).
[37] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401

(2004).
[38] A. J. Daley, C. Kollath, U. Schollwock, and G. Vidal, J. Stat.

Mech.: Theory Exp. (2004) P04005.
[39] Y. N. Fernandez and K. Hallberg, Front. Phys. 6, 13 (2018).
[40] Y. Núñez-Fernández, G. Kotliar, and K. Hallberg, Phys. Rev. B

97, 121113(R) (2018).
[41] K. Hallberg and Y. Nunez-fernandez, Phys. Rev. B 102, 245138

(2020).
[42] N. Aucar Boidi, H. Fernandez Garcia, Y. Núñez-Fernández, and

K. Hallberg, Phys. Rev. Res. 3, 043213 (2021).
[43] Z. Q. Cheng and C. A. Marianetti, Phys. Rev. B 103, 195138

(2021).
[44] Z. Q. Cheng and C. A. Marianetti, Phys. Rev. Lett. 126, 206402

(2021).
[45] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987).
[46] W. Metzner and D. Vollhardt, Phys. Rev. B 37, 7382 (1988).
[47] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
[48] J. Bünemann, F. Gebhard, and W. Weber, J. Phys.: Condens.

Matter 9, 7343 (1997).
[49] T. A. Maier, M. Jarrell, T. Pruschke, and M. Hettler, Rev. Mod.

Phys. 77, 1027 (2005).
[50] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E.

Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov,
and K. Held, Rev. Mod. Phys. 90, 025003 (2018).

[51] A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys.
Rev. B 77, 033101 (2008).

[52] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.106.205129 for the eigenstates of the local
Hamiltonian for the two-orbital Hubbard model and the gauge
freedom at N = 4.

[53] J. Bünemann, W. Weber, and F. Gebhard, Phys. Rev. B 57, 6896
(1998).

[54] K. Hallberg, D. J. Garcia, P. S. Cornaglia, J. I. Facio, and Y.
Nunez-fernandez, Europhys. Lett. 112, 17001 (2015).

[55] X. Y. Deng, L. Wang, X. Dai, and Z. Fang, Phys. Rev. B 79,
075114 (2009).

205129-13

https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevB.96.155111
https://doi.org/10.1088/0953-8984/28/10/105602
https://doi.org/10.1103/PhysRevB.98.075117
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1063/1.1712502
https://doi.org/10.1002/andp.201100250
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRevB.74.155107
https://doi.org/10.1103/PhysRevLett.99.126405
https://doi.org/10.1103/PhysRevLett.101.166405
https://doi.org/10.1103/PhysRevB.78.045115
https://doi.org/10.1103/PhysRevB.79.115119
https://doi.org/10.1103/PhysRevB.84.195130
https://doi.org/10.1103/PhysRevLett.115.247001
https://doi.org/10.1103/PhysRevLett.126.206401
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.55.583
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.84.075139
https://doi.org/10.1140/epjb/e2005-00117-4
https://doi.org/10.1103/PhysRevLett.115.136401
https://doi.org/10.1103/PhysRevB.100.115159
https://doi.org/10.1103/PhysRevLett.124.016401
https://doi.org/10.1103/PhysRevB.60.335
https://doi.org/10.1103/PhysRevB.66.045114
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.3389/fphy.2018.00013
https://doi.org/10.1103/PhysRevB.97.121113
https://doi.org/10.1103/PhysRevB.102.245138
https://doi.org/10.1103/PhysRevResearch.3.043213
https://doi.org/10.1103/PhysRevB.103.195138
https://doi.org/10.1103/PhysRevLett.126.206402
https://doi.org/10.1103/PhysRevLett.59.121
https://doi.org/10.1103/PhysRevB.37.7382
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1088/0953-8984/9/35/009
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/PhysRevB.77.033101
http://link.aps.org/supplemental/10.1103/PhysRevB.106.205129
https://doi.org/10.1103/PhysRevB.57.6896
https://doi.org/10.1209/0295-5075/112/17001
https://doi.org/10.1103/PhysRevB.79.075114

