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Here we propose an exact formalism, off-shell effective energy theory (OET), which provides a thermody-
namic description of a generic quantum Hamiltonian. The OET is based on a partitioning of the Hamiltonian and
a corresponding density matrix ansatz constructed from an off-shell extension of the equilibrium density matrix;
and there are dual realizations based on a given partitioning. To approximate OET, we introduce the central
point expansion (CPE), which is an expansion of the density matrix ansatz, and we renormalize the CPE using a
standard expansion of the ground-state energy. We showcase the OET for the one-band Hubbard model in d = 1,
2, and ∞, using a partitioning between kinetic and potential energy, yielding two realizations denoted as K and
X . OET shows favorable agreement with exact or state-of-the-art results over all parameter space, and has a
negligible computational cost. Physically, K describes the Fermi liquid, while X gives an analogous description
of both the Luttinger liquid and the Mott insulator. Our approach should find broad applicability in lattice model
Hamiltonians, in addition to real materials systems.

DOI: 10.1103/PhysRevB.101.081105

Computing the ground-state properties of quantum Hamil-
tonians requires the search of an exponentially large space
of wave functions. To formally resolve the issue of large
dimensionality, one can use effective energy approaches,
which partition the Hamiltonian of a given class into some
external and internal components, where each component
consists of operators and corresponding coupling constants.
The constrained search [1] can then be used to define the
energy of the internal contribution in terms of the internal
coupling constants and the expectation values of the external
operators. For example, in density functional theory (DFT)
[2–4], the internal component is the kinetic and interaction
energy, and the external component is the coupling between
the density and the external potential; and the resulting energy
functional depends on the density and the coupling constants
of the kinetic and interaction energy. The ground-state wave
function is then fully determined from the corresponding
external expectation values and internal couplings, but such
a construction is only useful if robust approximations can be
formulated.

Here we introduce off-shell effective energy theory (OET),
which employs a wave function ansatz determined from the
internal coupling constants and both the internal and external
expectation values. Unlike the usual effective energy theories,
such as DFT, an arbitrary set of expectation values will not
generally correspond to any ground state within the class of
Hamiltonians; but OET will yield the exact ground state when
minimizing the total energy over all expectation values. OET
opens a new avenue for developing novel approximations.
We introduce the central point expansion (CPE), which is an
expansion of the OET ansatz in terms of the internal couplings
and the internal expectation values, while treating the external
expectation values nonperturbatively. The CPE can then be
renormalized (RCPE) using the standard expansion of the
energy in terms of the external expectation values. Finally,

we exploit the possibility of inverting the role of internal
and external components, yielding a dual formulation of our
theory, which will be critical for an accurate description of the
Hamiltonian over all parameter space.

We apply OET to the single-band Hubbard model, which
is a canonical model of interacting fermions [5,6] with
many practical applications, and this will provide a strin-
gent benchmark of the OET within RCPE. For d = 1, the
Bethe ansatz (BA) efficiently provides the exact solution
[7,8], while for d = ∞, dynamical mean-field theory (DMFT)
[9–11] provides the solution using numerically exact, but
computationally intensive methods [12,13]. For an arbitrary
dimension, there are powerful but expensive methods which
might provide reliable solutions, though each typically has
severe limitations (e.g., quantum Monte Carlo [14,15] has
the minus sign problem [16,17], etc.). Our approach yields
favorable agreement with the aforementioned approaches over
all parameter space for the single-band Hubbard model in
d = 1, 2, and ∞, which is remarkable for a single formalism.

We begin by considering an arbitrary Hamiltonian which
has been partitioned into two parts, Ĥ = kK̂ + xX̂ , where
each contribution can be exactly solved. Though this is not
the most general scenario that we consider, it illustrates all key
features of the theory. We begin by choosing kK̂ as the internal
component and xX̂ as the external component, and this choice
is referred to as the K formulation. The effective energy theory
then yields the density matrix at a given temperature as

ρ(k, X ) = argminρ̂{〈kK̂ + β−1 ln ρ̂〉ρ̂ |〈X̂ 〉ρ̂ = X }, (1)

where X ∈ MX̂ , with MX̂ = {〈X̂ 〉ρ̂ : ρ̂ ∈ L} and L is the
Liouville space of all possible density matrices, and we use
the notation 〈Â〉ρ̂ = Tr(Âρ̂ ). The function ρ(k, X ) provides
the formal solution to Ĥ for arbitrary values of k and x. Our
main strategy is to introduce a trial density matrix using the
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OET ansatz

ρ̃(k, X, K ) = CP (k, X )ρK̂ (K )P (k, X ), (2)

where C is the normalization, K ∈ MK with MK = {〈K̂〉ρ̂ :
ρ̂ ∈ L}, ρK̂ (K ) = C ′ exp(κK̂ ) satisfying 〈K̂〉ρK̂ (K ) = K , where
C ′ is the normalization and κ ∈ R parametrizes ρK̂ (K ). The
exact projector P (k, X ) is defined by requiring Eq. (2) to
satisfy the on-shell condition: for any k ∈ R and X ∈ MX̂
there exists a K� ∈ MK such that ρ̃(k, X, K�) = ρ(k, X ). We
can solve for P (k, X ) using the on-shell condition

P (k, X ) = 1√
ρg

[
√

ρgρ(k, X )
√

ρg]1/2 1√
ρg

, (3)

where ρg = ρK̂ (K�). Finally, the ground-state energy can be
constructed as

E (k, x) = lim
β→∞

min
K∈MK ,X∈MX

〈Ĥ〉ρ̃(k,X,K ). (4)

It is useful to introduce the map ϒ(k, X, K ) =
(〈K̂〉ρ̃(k,X,K ), 〈X̂ 〉ρ̃(k,X,K ) ), which is the essential quantity
needed to execute the theory. Our formalism has recast the
exact solution of the Hamiltonian to a form which will prove
to be amenable to approximations.

We now introduce the key approximation scheme, the CPE.
The CPE amounts to choosing an appropriate K� and Taylor
series expanding ρ̃(k, X, K ) in k and K about some central
point. Here we choose the central point ρ̂c ≡ C1̂, where C
is the normalization, which yields (Kc, Xc) = (〈K̂〉ρ̂c , 〈X̂ 〉ρ̂c ),
and we choose K� such that P (k, Xc) = 1 within the CPE.
Expanding P (k, X ) to zeroth order in k about 0 and ρK̂ (K ) to
first order in K about Kc, we find K� = Kc and we have

P (k, X ) ≈ P (0, X ) =
√

ρX̂ (X )ρ−1
X̂

(Xc), (5)

ρK̂ (K ) ≈ ρK̂ (Kc)(1 + 〈〈�K̂ ; �K̂〉〉−1
ρX̂ (Xc )�K̂�K ), (6)

where �K̂ = K̂ − Kc1̂, �K = K − Kc, and 〈〈Â; B̂〉〉ρ̂ =
Tr(Â

√
ρ̂B̂

√
ρ̂ ), where the latter is known as the symmetric

correlator [18]. To evaluate the ground-state properties we
only need to evaluate �K̂ and �X̂ = X̂ − Xc1̂ under the CPE
approximated ρ̃(k, X, K ), denoted ρ̄ for brevity:

〈�K̂〉ρ̄ = λ[〈�K̂〉ρX̂ (X ) + Z (�X )�K], (7)

〈�X̂ 〉ρ̄ = λ

(
�X + 〈〈�X̂ ; �K̂〉〉ρX̂ (X )

〈〈�K̂ ; �K̂〉〉ρX̂ (Xc )
�K

)
, (8)

λ = (
1 + 〈�K̂〉ρX̂ (X )〈〈�K̂ ; �K̂〉〉−1

ρX̂ (Xc )�K
)−1

, (9)

Z (�X ) = 〈〈�K̂ ; �K̂〉〉ρX̂ (X )〈〈�K̂ ; �K̂〉〉−1
ρX̂ (Xc ), (10)

where �X = X − Xc. The preceding expectation values ap-
proximate the map ϒ(k, X, K ), and given that k = 0 within
the CPE, we use a distinct symbol ϒ̄ (X, K ) = (〈K̂〉ρ̄ , 〈X̂ 〉ρ̄ ).

For a number of important Hamiltonians, including the
Hubbard model and its generalizations, we notice that
〈�K̂〉ρX̂ (X ) = 0, which implies that 〈〈�X̂ ; �K̂〉〉ρX̂ (X ) = 0, and
we refer to this scenario as the orthogonal response con-
dition (ORC) [18]. For Hamiltonians with a given partition
that satisfy the ORC, the CPE satisfies the exact condi-
tion ϒ̄ (�K, 0) = (�K, 0), and has the form ϒ̄ (�K,�X ) =
[Z (�X )�K,�X ]; all subsequent discussions of the CPE will

presume the ORC. The CPE will provide a reliable solution
for �X � �K and may provide reasonable solutions for
�X ≈ �K .

Though the CPE has a nonperturbative structure in X , in
addition to the favorable characteristics outlined above, it does
not have the correct second-order expansion coefficient in
�X . Therefore, we introduce the RCPE [18], which maintains
the form of ϒ̄ but replaces Z → R(Z ). Here we introduce per-
haps the simplest scheme where R(Z ) = γ0Zγ1 + (1 − γ0)Zγ2

and γ1, γ2 are chosen from an asymptotic analysis while γ0 is
chosen to reproduce perturbation theory to second order. It
should be emphasized that R has no free parameters.

The K formalism takes kK̂ as internal and xX̂ as external,
as previously defined. Alternatively, we can invert internal and
external to create a dual formulation, which we refer to as the
X formulation; and this can be obtained by the substitutions

K ↔ X , k ↔ x, K ↔ X, K̂ ↔ X̂ . (11)

All equations within the K formalism will have a
correspondence in X [18], and therefore a subscript of K or
X will be introduced when necessary. The X formulation
provides an opposite viewpoint of the physics, and exploring
the RCPE within both K and X will provide a more robust
description of the solution as each formulation will reproduce
the exact second-order expansion of the energy in the
corresponding limit (e.g., using K for small x/k). There could
be many schemes to choose between K and X , and the total
energy is a natural candidate. However, the RCPE may give
energies that are lower than the exact solution in its dual
regime (e.g., using K for large x/k), and thus using energy
as a switching criteria will have to wait for approximations
beyond the RCPE. Here we explore both K and X approaches
over all parameter space [18], and simply use the crossover
of an energy derivative (e.g., double occupancy, density, etc.)
when switching is employed.

Several simplifications were made in the above exposi-
tion of the OET formalism and its approximations. Now we
consider a more general case applicable to many important
Hamiltonians including Hubbard models. We begin by con-
sidering a Hamiltonian partitioned into two parts, where each
portion is now resolved onto a set of commuting operators

Ĥ = ĤK + ĤX =
∑

m

kmK̂m +
∑

n

xnX̂n, (12)

where [K̂m, K̂m′ ] = [X̂n, X̂n′ ] = 0. A set of quantities {Ai} (e.g.,
operators, expectation values, etc.) can be encoded as a vec-
tor, which is denoted as A = (A1, A2, . . . ). For example, we
have Ĥ = k · K̂ + x · X̂. We define the density matrix deter-
mined from A as ρÂ(A) = C exp(α · Â) satisfying 〈Â〉ρÂ(A) =
A, where α is a vector of real numbers, and the domain
of ρÂ(A) is denoted MÂ = {〈Â〉ρ̂ : ρ̂ ∈ L}. The ground-state
energy can then be written as

E (k, x) = lim
β→∞

min
K∈MK̂,X∈MX̂

〈Ĥ〉ρ̃(k,X,K). (13)

We also define the map ϒ(k, X, K) = (〈K̂〉ρ̃(k,X,K),

〈X̂ρ̃(k,X,K) ), which provides the complete solution to the
Hamiltonian. In order to implement the CPE in general, we
need to find the independent constraints between K̂ and X̂
(e.g., density), denoted as Ĉ, where Ĉi = Ai · K̂ = Bi · X̂.
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The central point will be chosen as ρ̂c = ρĈ(C) where
[C]i = Ai · K = Bi · X.

Here we test our formalism on the single-band Hubbard
model

Ĥ =
∑
pσ

εpn̂pσ + N

(
Ud̂ −

∑
σ

μσ n̂σ

)
, (14)

where p labels a point in the first Brillouin zone, N is
the total number of sites in the lattice, n̂σ = (1/N )

∑
j n̂ jσ

where j labels a real space lattice point and n̂ jσ =
â†

jσ â jσ , μσ = μ + h(δ↑σ − δ↓σ ), and d̂ = (1/N )
∑

j n̂ j↑n̂ j↓.

To connect with Eq. (12), we identify K̂ = (. . . , n̂pσ , . . . ),
X̂ = (d̂, n̂↑, n̂↓), and Ĉ = (n̂↑, n̂↓). For a given constraint
(n↑, n↓), we parametrize K ∈ MK and X ∈ MX us-
ing �d = d − n↑n↓ and �npσ = npσ − nσ , where �d ∈
[− min (p0, p2), min (p↑, p↓)] with p0 = (1 − n↑)(1 − n↓),
pσ = (1 − nσ̄ )nσ , and p2 = n↑n↓; and �npσ ∈ [−nσ , 1 − nσ ]
with the constraint

∑
p �npσ = 0; and for brevity, we denote

�n = (. . . , �npσ , . . . ).
We begin by presenting the CPE for both the K and X

formalisms [18], where the K formalism yields

ϒ̄K(�n,�d ) = (ZK(�d )�n,�d ), (15)

[ZK(�d )]pσ = Z (σ )
K (�d ) = Aσ

K(�d )/Aσ
K(0), (16)

Aσ
K(�d ) = 〈〈â†

jσ ; â jσ 〉〉2
ρX̂ (�d ), (17)

where ρX̂(�d ) = ⊗
jρ j (�d ) and

ρ j (�d ) = diag(p0 + �d, p↓ − �d, p↑ − �d, p2 + �d ).

(18)

The X formulation yields

ϒ̄X (�n,�d ) = (�n, ZX (�n)�d ), (19)

ZX (�n) = AX (�n)/AX (0), (20)

AX (�n) = (1/N4)
∏
σ

∣∣∣∣∣
∑

p

〈〈â†
pσ ; âpσ 〉〉ρK̂ (�n)

∣∣∣∣∣
2

, (21)

where ρK̂(�n) = ⊗
pσ ρpσ (�npσ ) and

ρpσ (�npσ ) = diag(1 − nσ − �npσ , nσ + �npσ ). (22)

The RCPE for the K formalism can be constructed as
ϒK(k, X, K) = (RK(k, ZK )�n,�d ) with [RK(k, ZK )]pσ =
γ0(Z (σ )

K )γ1 + (1 − γ0)(Z (σ )
K )γ2 and γ1 = 1 and γ2 = 1/2 [18].

Similarly, for the X formalism we have ϒX (x, K, X) =
(�n,RK(x, ZX )�d ), where RK(x, ZX ) = γ0(Z (σ )

X )γ1 + (1 −
γ0)(Z (σ )

X )γ2 and γ1 = 1 when there is no short-range magnetic
order (i.e., paramagnetic state in d = ∞) while γ1 = 1/2
otherwise; and γ2 = 1/4 in all cases [18]. In both K and X ,
γ0 is uniquely determined from perturbation theory, thus there
are no free parameters within the RCPE.

It should be noted that within the CPE (i.e., without
renormalization) of the K formulation, the classic Gutzwiller
approximation (GA) [20–24] to the Hubbard model is rig-
orously recovered, providing a qualitative description of the

Fermi liquid phase, similar to slave bosons [25–27] and den-
sity matrix embedding theory [28–30]. Therefore, the RCPE
in the K formulation is a clear improvement of Gutzwiller
and related approximations. Alternatively, the X formulation
within the RCPE will be shown to provide a robust description
of the Luttinger liquid and the Mott insulator, and we are
not aware of a corresponding result, though a related ap-
proach has been explored in the Baeriswyl wave function and
its extensions [31–36]. Furthermore, we note that the maps
ϒK, ϒX directly provide a description of the physical space
of all (〈�n̂〉ρ̂ , 〈�d̂〉ρ̂ ), yielding a concrete approximation
that resolves the N-representability problem [37–42] in this
class of Hamiltonians. Therefore, OET provides an alternative
viewpoint to this problem, which is of strong interest in the
field of quantum chemistry and solid state physics [43–52].

We now apply OET for the Hubbard model in d = 1,
2, and ∞ over a broad range of t , U , and density, and we
compare to exact or state-of-the-art methods. In infinite
dimensions, DMFT is formally exact, and numerical
renormalization group [53] is used to solve the DMFT
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FIG. 1. Double occupancy for the Hubbard model in various
dimensions. (a) The d = ∞ Bethe lattice for various dopings, solved
within DMFT, GA, and OET. (b) The d = 1 lattice, solved within
the BA, GA, and OET. (c) The d = 2 square lattice solved with GA,
OET, and selected points using VMC and AFQMC [19].
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FIG. 2. Magnetization M vs magnetic field h for the Hubbard
model in d = ∞ and d = 1. (a) The d = ∞ Bethe lattice solved
within DMFT (insulating results from Ref. [9], denoted with points),
GA, and OET. (b) The d = 1 lattice solved within the BA, GA, and
OET for U/t = 1, . . . , 10 (right to left).

impurity problem [9,54–56] as implemented in the “NRG
Ljubljana” code [57]. In one dimension, we employ the exact
BA solution [7,8], while in two dimensions we compare
to variational quantum Monte Carlo (VMC) and auxiliary
field quantum Monte Carlo (AFQMC) [19]. Additionally, we
compare to the Gutzwiller approximation in all dimensions
given that it is an efficient approach. We choose to present
the double occupancy, density, and magnetization which are
energy derivatives, providing a more sensitive comparison
than solely evaluating the total energy. Additionally, total
energies are presented for n = 1 in the Supplemental Material
[18].

We begin by examining the double occupancy as a function
of U/t for d = ∞ at half-filling [see Fig. 1(a)]. The DMFT
results are denoted by blue lines, while the Gutzwiller results
are in green. Gutzwiller yields a qualitative description of the
metallic phase, whereas the insulator is improperly described
as a collection of atoms. The OET results are given in red,
with a dashed line for K and solid for X , showing favorable
agreement with DMFT in both the metallic and insulating
regimes. The inset illustrates OET for doped cases, showing
excellent agreement with DMFT. We now turn to d = 1 and
the d = 2 square lattice with nearest-neighbor hopping [see
Figs. 1(b) and 1(c)]. In one dimension [Fig. 1(b)], the OET X
formulation shows remarkable agreement with the BA, both
at half-filling and for doped cases, and the K formulation is
found not to be necessary [18]. In two dimensions, OET is
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FIG. 3. The density (�n = n − 1) as a function of chemical
potential (�μ = μ − U/2) for the Hubbard model in d = ∞ and
d = 1. (a) The d = ∞ Bethe lattice solved within DMFT, GA, and
OET for U/t = 1, . . . , 10. (b) The d = 1 lattice solved with the BA,
GA, and OET for U/t = 1, . . . , 16.

also in good agreement with the VMC and AFQMC results,
both at half-filling and for the doped cases; and here conti-
nuity is used to switch between the K and X formulations
[Fig. 1(c)].

We now turn to the magnetization under applied magnetic
field and the density as a function of the chemical potential.
For d = ∞, OET precisely captures the magnetization in
the metallic regime, and is in reasonable agreement with the
insulating DMFT results, though the latter have not been
recomputed with precise modern methods [see Fig. 2(a)]. For
d = 1, OET has excellent agreement over all parameters [see
Fig. 2(b)]. In both d = ∞ and d = 1, Gutzwiller discontin-
uously polarizes for sufficiently large U . Now we consider
the density as a function of the chemical potential in d = ∞
and d = 1 (Fig. 3). For d = ∞, the system opens a gap at
a finite U , and the K and X ansatz can reasonably capture
this behavior [Fig. 3(a)]. For d = 1, it is well known that any
finite U opens a gap, and this property is captured using the X
formulation, yielding favorable agreement over all parameters
[Fig. 3(b)]. Results for d = 2 can be found in Ref. [18].

In summary, we have developed an exact formalism (i.e.,
OET) and a generic approximation scheme (i.e., RCPE) for
solving the ground state of quantum Hamiltonians. Our ap-
proach is proven to be efficient and globally robust for the one-
band Hubbard model in d = 1, 2, and ∞. The success of our
approach is based on four key ideas: the exact OET construc-
tion, a nonperturbative form given by the CPE, a perturbative
correction given by the RCPE, and the combination of the
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dual forms K and X . Our approach can be straightforwardly
applied to a multitude of important quantum Hamiltonians.
Furthermore, our entire formalism can be generalized to finite
temperature, and this will be presented in a forthcoming
paper. Finally, OET can straightforwardly be combined with
DFT, similar to DFT+DMFT [12] and DFT+Gutzwiller [58],
resulting in a highly efficient first-principles approach to the
thermodynamics of strongly correlated materials in addition
to molecules.
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