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The ability to control the properties of twisted bilayer transition metal dichalcogenides
in situ makes them an ideal platform for investigating the interplay of strong
correlations and geometric frustration. Of particular interest are the low energy scales,
which make it possible to experimentally access both temperature and magnetic fields
that are of the order of the bandwidth or the correlation scale. In this manuscript, we
analyze the moiré Hubbard model, believed to describe the low energy physics of an
important subclass of the twisted bilayer compounds. We establish its magnetic and the
metal–insulator phase diagram for the full range of magnetic fields up to the fully spin-
polarized state. We find a rich phase diagram including fully and partially polarized
insulating and metallic phases of which we determine the interplay of magnetic order,
Zeeman-field, and metallicity, and make connection to recent experiments.

strongly correlated systems | moiré materials | magnetism | metal–insulator transitions

The correlation-driven Mott metal–insulator transition—in other words, under what
circumstances can electrons move through a material—is one of the central issues in
modern-day condensed matter physics. Developments over the past 5 y in moiré tran-
sition metal dichalcogenides, including the observation of a continuous Mott transition
(1) and quantum criticality (2), have opened a new experimental frontier in this area
(3–6). Moiré materials consist of two or more atomically thin layers, slightly mismatched
by a combination of different lattice constants and stacking at small twist angles. The
lattice mismatch and twist angle, combined with a weak but nonzero interlayer tunneling,
produce experimental platforms whose low energy physics is described by a few-band
model with a very large unit cell and therefore very low bandwidth and interaction
scales, which moreover are tunable by twist angle, pressure, and the choice of materials
in which the moiré system is embedded (3, 5). One particularly widely studied class of
moiré materials are bilayers composed of transition metal dichalcogenide materials such as
WSe2 and MoTe2 which in appropriate circumstances realize the moiré Hubbard model:
A two-dimensional triangular lattice hosting a single band of electrons correlated by an
interaction that to a good approximation may be taken to be site-local. Importantly, the
magnitude and form of the interaction and the electronic band structure can be varied over
wide ranges in situ by changing gate potentials and twist angles (4–8) while all electronic
scales are small enough that temperatures and magnetic fields spanning the whole range
from very low to higher than the effective bandwidth are experimentally accessible.

While the metal–insulator transition in two dimensional Hubbard models has been
studied, both in general (9–16) and in connection to moiré systems (17, 18), the effect
of a magnetic field seems apart from one notable exception (19) not to have been
investigated, perhaps in part because for most conventional materials, the experimentally
accessible fields are a tiny fraction of the bandwidth so that linear response theory suffices.
Motivated by the wide range of field strengths experimentally accessible in moiré systems,
in this paper, we use state-of-the-art single-site and cluster dynamical mean-field methods
to study the metal–insulator phase diagram of the moiré Hubbard model over the full
magnetic field range, assuming that the primary coupling is the Zeeman coupling to
the electronic spin. Orbital effects (20–23) will be considered in a forthcoming paper.
We reveal full and partially polarized insulating and metallic phases as well as canted
antiferromagnetically ordered phases.

Model
Single layers of WSe2 form a triangular lattice with strong spin–orbit coupling and
inversion symmetry breaking. Stacking the layers at an appropriate small twist angle
produces again a triangular lattice with a corresponding moiré lattice. At the twist
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angles of relevance for recent experiments (1, 2), the relevant
electronic states on the two layers are hybridized, leading to
physics determined by a single spin-up band and a single spin-
down band, and with different k and spin states composed of
different linear combinations of the individual layer states; this
implies a spin-dependent hopping amplitude in the tight-binding
model describing the moiré lattice (2, 24).

Motivated by these general considerations, as a low energy
model, we study a modification of the well-known Hubbard
model (25–28), a fundamental and widely studied model
capturing the essential features of electronic correlations (29, 30):
the so-called moiré Hubbard model (MHM) (24).

The Hamiltonian is

H =−
∑
〈ij〉,�=↑↓

c†
i,� t

ij
� cj,� + U

∑
i

ni,↑ni,↓

− g�BB
∑
i,�,�

c†
i,��

�,�
z ci,� . [1]

Here, i, j represent nearest-neighbor sites on a two-dimensional
triangular lattice, U is the (purely local) Coulomb interaction,
and t ij� = |t| ei��ij is a spin-dependent hopping parameter (24),
which can be parameterized by a complex phase � arising from
the strong spin–orbit coupling of the constituent layers and a
magnitude t. g is the gyromagnetic factor of an electron, �B is
the Bohr magneton, and B an externally applied field in the z-
direction. The structure of the model is such that at � = �/6
at half-filling the model has a particle–hole symmetry, a nested
Fermi surface, and a third-order van Hove point, implying that
at T =B= 0, the system is a 120◦−antiferromagnetic insulator
at even infinitesimal coupling; while for � 6= �/6, the model
at T = 0 is a paramagnetic metal at small interaction strengths,
with a first-order magnetic and metal–insulator transition as the
relative interaction U/t is increased above a critical value, see ref.
24, and SI Appendix. Both t and�may be experimentally tuned in
situ by the application of appropriate gate voltages. In this work,
we analyze the half-filled situation

〈
n↑
〉
+
〈
n↓
〉
= 1, considering

both paramagnetic and 120◦ magnetically ordered states.

Zero Field Phase Diagram. For orientation and to demonstrate
the robustness of our methods, we present in Fig. 1 the zero-
field phase diagram of the fully nested (� = �/6) model in
the temperature (T )-interaction (U ) plane obtained from single-
site and cluster dynamical mean-field methods. Paramagnetic
insulator, paramagnetic metal, and antiferromagnetic insulator
phases are found. The phase boundaries determined by the
different methods are quantitatively similar almost everywhere,
strongly suggesting that the results we find are insensitive to
cluster effects. The only important difference is that, as is well
known, the single-site DMFT method strongly overestimates
the low T critical U needed to drive a paramagnetic metal-
paramagnetic insulator phase transition; but it is important to
note that the region of large difference occurs within the 120◦-
antiferromagnetic phase (i.e., below TN ) where the paramagnetic
phase single-site DMFT calculation is irrelevant.

We remark that the calculations involve a mean-field ap-
proximation, so at finite Nc , the calculations do not capture
the long-wavelength fluctuations that convert the transition to
one of the Kosterlitz–Thouless type (for � 6= 0) or push the
transition temperature to zero for the Heisenberg symmetry
� = 0 case (32). The mean-field temperature found here should
be interpreted as setting the scale at which magnetic fluctuations
become both strong and long ranged.

Fig. 1. Phase diagram of the moiré Hubbard model [Eq. 1] for � = �/6 at
half-filling and zero external magnetic field B=0 calculated by the dynamical
mean-field methods indicated in the legends. Solid reddish lines denote
magnetic phase transition lines from a paramagnetic to a 120◦ ordered
antiferromagnetic state; solid blueish lines denote a cross-over from a
metallic to an insulating region. Dashed blueish lines mark a metal–insulator
cross-over when the calculation is restricted to a nonmagnetic (metastable)
solution.

Applied Magnetic Field at T =0. Turning now to the effects of
a magnetic field, in Fig. 2A, we show the phase diagram in
the magnetic field-interaction plane. This phase diagram was
obtained at T = 0 using the single-site variational discrete
action theory (VDAT), which has similar accuracy as the
single-site DMFT, in the paramagnetic phase; however, spot
checking the result with cluster methods and by allowing for
magnetic order reveals that the single-site VDAT result for the
full polarization line is quantitatively accurate. A fully spin-
polarized, trivially insulating high-field phase is separated from a
partially polarized phase by a transition line (sharp at T = 0). At
small-to-intermediate interaction, the transition is continuous
in the sense that the magnetization mz in the paramagnetic
phase evolves smoothly up to the saturation value mz = 1,
and our computed phase boundary agrees precisely with the
Hartree–Fock result (24) and results from exact diagonalization
(33). At larger interactions U/t ≳ 6, the transition changes to
first order (meaning that mz jumps from a value less than 1 to the
saturated value) while the line deviates from the Hartree–Fock
result and rolls over to the∼ t2/U saturation field expected for a
Heisenberg magnet.

Also shown in the phase diagram is the paramagnetic (Mott)
metal–insulator phase boundary. At the � = �/6 value used
to construct Fig. 2, the metallic phase is reentrant: In the
small range 12.5 ≲ U/t ≲ 14, the zero B-field Mott insulator
becomes metallic as the field is increased, before again becoming
insulating. This reentrance is absent for � = 0 (see SI Appendix
for the corresponding phase diagram), and it should be noted
that cluster effects substantially change the single-site results for
the Mott transition.

Applied Field at Nonzero Temperatures. We now incorporate
magnetic ordering and nonzero temperatures in the analysis. We
focus on the interaction strength U/t = 4, believed to be a
suitable value for the description of the homobilayer WSe2 (18).
Fig. 2 B–G show the Green functions and self-energies (minus
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Fig. 2. (A) Zero temperature phase diagram for the half-filled perfectly nested MHM (� = �/6), calculated in the interaction strength (U)-magnetic field (B)
plane at T = 0 using the VDAT method in the paramagnetic phase, i.e., without permitting spontaneous ordering. A phase boundary separates a large B,
fully spin-polarized trivially insulating phase (green shaded region) from a small B partially spin-polarized phase. For U/t ≲ 6 and U/t ≳ 12, the transition
to the fully polarized phase is second order (green circles) while for (6 ≲ U/t ≲ 12), the transition is first order (green squares). The dashed line shows the
Hartree–Fock approximation to the full-polarization transition line. The dotted line shows the mean-field approximation to the full polarization transition of a
nearest-neighbor Heisenberg model with J ∝ t2/U. Also shown is the critical coupling Uc of the Mott–Hubbard metal–insulator transition, which is seen to be
reentrant as a function of field (purple pentagons). The vertical line at U/t = 4 indicates B fields at which a dynamical mean-field calculation at a temperature
T/t = 1/17 ≈ 0.06 leads to an antiferromagnetic insulator (red triangles), paramagnetic metal (blue stars), or trivial fully spin-polarized insulator (green circles).
(B)–(G) Single-site dynamical mean-field results for the Matsubara frequency dependence of the imaginary part of the Green function (averaged over spin) and
the two spin components of the dynamical self-energy ΔΣ = Σ(!) − Σ(!→∞) obtained at the nonzero temperature T/t = 1/17 for several magnetic fields
along the vertical U/t = 4 line of (A).

their Hartree contributions) on the Matsubara axis, obtained
from single-site DMFT at T /t = 1/17. At low field strengths
g�BB/t = 1, the system is insulating, indicated by the decrease
in the imaginary part of the Green function at low Matsubara
frequencies. This gap is opened by a strongly spin-dependent
self-energy. At large field strengths g�BB/t ≳ 3.4, the system is
fully polarized, the lower � =↑ band is completely filled, and the
combination of the magnetic field and the interaction opens a
gap between the spin-up and spin-down bands. In between, e.g.,
at g�BB/t =3 and temperature T /t = 1/17, the xy-ordering is
suppressed by the magnetic field; however, the system is not yet
fully z-polarized, and, hence, the system is metallic.

We now turn to physical observables that can be obtained from
these raw Green function data. Fig. 3A shows that as the Zeeman-
field is increased from zero the staggered magnetization mxy
decreases and the uniform magnetization mz increases, indicative
of the spin canting expected for a Heisenberg-symmetry magnet
and sketched on the figure. At the value g�BB/t = 2.8, the
staggered magnetization vanishes, but at this field, the uniform
magnetization mz < 1, indicating at this temperature, a small
window of paramagnetic partially polarized phase separating the
antiferromagnet from the fully polarized state.

Fig. 3B examines the evolution of the electronic properties of
these states, plottingΞ :=−dA/dT , whereA=− 1

�T G(� = �/2)

A C

B

D E F

Fig. 3. (A) Magnetic field (B) dependence of antiferromagnetic order parameter mxy (blue triangles) and spin polarization mz (orange squares). (B) shows
Ξ = −dA/dT which is positive (negative) in metallic (insulating) phases (SI Appendix, Text). The local spectral functions (C)–(F), obtained with MaxEnt analytic
continuation (34), confirm this classification. All quantities were computed at perfect nesting (� = �/6) for U/t = 4 and T/t=1/17 with single-site DMFT.
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is an estimate for the many-body density of states at the Fermi
level. For the metallic state, Ξ > 0, whereas for the gapped
states, Ξ < 0. The magnetic state at different fields is shown
as colored symbols. Densities of states obtained by analytically
continuing the Matsubara axis Green function are shown for
several points in panels (C)–(F), confirming the identification of
the different phases. We see that, at this value of U , insulating
and magnetically ordered behavior are closely linked.

T–B Phase Diagrams and Generalizations. In order to demon-
strate the robustness of our results, Fig. 4 presents the phase
diagram in the field-temperature plane at U/t = 4 for a different
phase angle (� = �/8), for which the nesting is imperfect and
the van Hove singularity is removed from the Fermi surface.
The analogous phase diagram for perfect nesting along with
plots of the Fermi surface for the different values of � can
be found in SI Appendix. Although some quantitative features
change compared to �=�/6 (for example, a smaller onset of the
magnetic ordering temperature at zero B-field), the two phase
diagrams are qualitatively very similar: Both show two types of
magnetic ordering as well as an intermediate metallic phase.

The ordering temperature TN (red triangles), denoting the
second-order phase transition from a paramagnetic metal to a
120◦ ordered insulator, is reduced upon the application of the
external field. Interestingly, as already pointed out before (and
in contrast to T = 0), at nonzero temperatures, an intermediate
metallic phase (blue stars) appears with partial z-polarization. At
even larger fields, the system enters the fully polarized regime,
which is insulating (green circles). At nonzero temperatures,
the z-magnetization is never completely saturated; hence, we
distinguish the partially polarized state from a “fully polarized”
one using the criterion mz(B, Tpol) = 0.997, which defines the
boundary curve Tpol(B) shown in Fig. 4.

We have found that, as the temperature is decreased, the range
of B over which an intermediate metallic regime is observed
decreases; the available evidence implies that at T = 0, the
entire range from B = 0 up to the saturation field is xy-ordered
and insulating, consistent with previous Hartree–Fock (24) and
exact diagonalization results (33). Moreover, this remains the
case even when the nesting (which favors the magnetic phase) is
reduced. Finally, let us note that nonlocal (spatial) correlations,
neglected by DMFT, do not change the picture drastically. This
can be inferred from the comparison (and qualitative agreement)
of DMFT with 9-site CDMFT calculations in Fig. 4B and is
discussed further in SI Appendix (31).

Conclusions, Connection to Experiments, and Outlook. In this
paper, we have investigated the full Zeeman magnetic field
dependence of the metal–insulator and magnetic field phase
diagram of the moiré Hubbard model (two-dimensional trian-
gular lattice Hubbard model with xy-magnetic anisotropy and
nontrivial hopping phase). Our focus on the Zeeman (spin)
coupling and neglect of the orbital coupling is motivated by
the large g-factor and still moderate lattice parameters available
in current moiré systems (see ref. 24 for estimates to twist
angles at which orbital effects will become relevant). Future
work will address the orbital effects of the field. Our results
substantially extend and generalize the important early work of
Laloux and Georges on the infinite-dimensional Hubbard model
(19). Our comparison of single-site and cluster dynamical mean-
field approximations confirms that once magnetic ordering is
allowed for, the single-site approximation provides a reasonably
accurate solution even though the model is two-dimensional and
that the VDAT method provides an extremely computationally
efficient and highly accurate solution for ground-state properties.
Within this approximation, we generally find, for both nested and
nonnested cases, that at T = 0, the B = 0 magnetic order and
insulating behavior persist over the entire B > 0 field range until
the system becomes fully polarized, with the order parameter
and transition temperature being gradually reduced by the spin
canting. Metallic behavior is only found at nonzero temperatures
for magnetic fields that suppress the magnetically ordered state
to lower temperatures but are too weak to yield a fully spin-
polarized state. Our results may be applicable to the recently
studied twisted WSe2 system. A precise comparison is difficult
because the bandwidth cannot be unambiguously determined,
but estimates from band theory (4) and quantum oscillation
measurements on a sample with a moiré lattice constant of
6.3 nm suggest at low hole density a mass of ≈ 0.4 me implying
t ≈ 2 meV. Use of the band theory g-factor ≈ 6 and U/t = 4
would then suggest that a fully polarized state would occur at
about 30 T On the theoretical side, it would be of interest to
investigate a multi-orbital or nonlocal interaction extension of
the MHM analogously to an extended Hubbard model, see, e.g.,
refs. 35–37 as well as the role of superconductivity (38–40).

Materials and Methods

We investigate this model by means of the dynamical mean-field theory [DMFT
(9, 41, 42)] in its single site and cluster forms. We employ two flavors of cluster
DMFT: the cellular DMFT [CDMFT (43) with center-focused post-processing (15)]

A B

Fig. 4. (A) Phase diagram in the plane of temperature and Zeeman magnetic field, indicating magnetic and metallic phases computed for fixed U/t= 4 and
�=�/8 (imperfect nesting), calculated by DMFT. (B) Comparison of DMFT and 9-site CDMFT for T/t = 1/17 and �=�/6 (perfect nesting).
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and the dynamical cluster approximation [DCA (43)]. We use cluster sizes Nc ∈
{1, 3, 7, 9}. For our calculations at nonzero temperatures, we use continuous-
time quantum Monte Carlo in its interaction expansion (CT-INT), using the TRIQS
package (44), to solve the dynamical mean-field equations (45, 46). These
methods provide results only above a certain low-temperature limit, which is
typically low enough that a reliable extrapolation to the T = 0 physics is possible.
For some of our calculations, we employ the recently developed VDAT (47–49)
which provides an extremely computationally efficient estimate of ground-state
properties of the single-site model. Details of the solvers, cluster geometries,
and implementations are given in SI Appendix.

Data, Materials, and Software Availability. Data used to create Figures 1,
2, 3, 4 of the main text and S1, S13, and S5 are publicly available at https://
github.com/patricktscheppe/magnetism_and-metallicity (50); Data for figures
s2-s4 and S6-12 are included in the article and/or SI Appendix.
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23. J. Vučičević, R. Žitko, Universal magnetic oscillations of DC conductivity in the incoherent regime of
correlated systems. Phys. Rev. Lett. 127, 196601 (2021).

24. J. Zang, J. Wang, J. Cano, A. J. Millis, Hartree-Fock study of the moiré Hubbard model for twisted
bilayer transition metal dichalcogenides. Phys. Rev. B 104, 075150 (2021).

25. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. London. Ser. A Math. Phys.
Sci. 276, 238–257 (1963).

26. J. Hubbard, B. H. Flowers, Electron correlations in narrow energy bands III. An improved solution.
Proc. R. Soc. London Sect. A 281, 401–419 (1964).

27. M. C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals. Phys. Rev. Lett.
10, 159–162 (1963).

28. J. Kanamori, Electron correlation and ferromagnetism of transition metals. Prog. Theor. Phys. 30,
275–289 (1963).

29. M. Qin, T. Schäfer, S. Andergassen, P. Corboz, E. Gull, The Hubbard model: A computational
perspective. Annu. Rev. Condens. Matter Phys. 13, 275–302 (2022).

30. D. P. Arovas, E. Berg, S. A. Kivelson, S. Raghu, The Hubbard model. Annu. Rev. Condens. Matter
Phys. 13, 239–274 (2022).

31. N. D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-
dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1307 (1966).

32. A. Wietek et al., Tunable stripe order and weak superconductivity in the Moiré Hubbard model.
Phys. Rev. Res. 4, 043048 (2022).

33. G. J. Kraberger, R. Triebl, M. Zingl, M. Aichhorn, Maximum entropy formalism for the analytic
continuation of matrix-valued Green’s functions. Phys. Rev. B 96, 155128 (2017).

34. N. Gneist, L. Classen, M. M. Scherer, Competing instabilities of the extended Hubbard model on
the triangular lattice: Truncated-unity functional renormalization group and application to moiré
materials. Phys. Rev. B 106, 125141 (2022).

35. Y. Zhou, D. N. Sheng, E. A. Kim, Quantum phases of transition metal dichalcogenide moiré
systems. Phys. Rev. Lett. 128, 157602 (2022).

36. G. Mazza, A. Amaricci, Strongly correlated exciton-polarons in twisted homobilayer heterostruc-
tures. Phys. Rev. B 106, L241104 (2022).

37. M. Bélanger, J. Fournier, D. Sénéchal, Superconductivity in the twisted bilayer transition metal
dichalcogenide WSe2: A quantum cluster study. Phys. Rev. B 106, 235135 (2022).

38. L. Klebl, A. Fischer, L. Classen, M. M. Scherer, D. M. Kennes, Competition of density waves and
superconductivity in twisted tungsten diselenide. Phys. Rev. Res. 5, L012034 (2023).

39. Y. M. Wu, Z. Wu, H. Yao, Pair-density-wave and chiral superconductivity in twisted bilayer transition
metal dichalcogenides. Phys. Rev. Lett. 130, 126001 (2023).

40. W. Metzner, D. Vollhardt, Correlated lattice fermions in d = ∞ dimensions. Phys. Rev. Lett. 62,
324–327 (1989).

41. A. Georges, G. Kotliar, Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479–6483 (1992).
42. T. Maier, M. Jarrell, T. Pruschke, M. H. Hettler, Quantum cluster theories. Rev. Mod. Phys. 77,

1027–1080 (2005).
43. O. Parcollet et al., Triqs: A toolbox for research on interacting quantum systems. Comput. Phys.

Commun. 196, 398–415 (2015).
44. A. N. Rubtsov, V. V. Savkin, A. I. Lichtenstein, Continuous-time quantum Monte Carlo method for

fermions. Phys. Rev. B 72, 035122 (2005).
45. E. Gull et al., Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod.

Phys. 83, 349 (2011).
46. Z. Cheng, C. A. Marianetti, Variational discrete action theory. Phys. Rev. Lett. 126, 206402 (2021).
47. Z. Cheng, C. A. Marianetti, Foundations of variational discrete action theory. Phys. Rev. B 103,

195138 (2021).
48. Z. Cheng, C. A. Marianetti, Precise ground state of multiorbital Mott systems via the variational

discrete action theory. Phys. Rev. B 106, 205129 (2022).
49. Z. Cheng, C. A. Marianetti, Gauge constrained algorithm of variational discrete action theory at

N = 3 for the multiorbital Hubbard model. Phys. Rev. B 108, 035127 (2023).
50. P. Tscheppe et al., Data used to create figures 1, 2, 3, 4 and S1, S5, and S13. GitHub. https://

github.com/patricktscheppe/magnetism_and-metallicity. Deposited 20 December 2023.

PNAS 2024 Vol. 121 No. 3 e2311486121 https://doi.org/10.1073/pnas.2311486121 5 of 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
O

L
U

M
B

IA
 U

N
IV

 L
IB

 S
A

S-
E

L
E

C
T

R
O

N
IC

 M
A

T
E

R
IA

L
S 

on
 J

an
ua

ry
 1

7,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
8.

59
.1

44
.3

0.

https://www.pnas.org/lookup/doi/10.1073/pnas.2311486121#supplementary-materials
https://github.com/patricktscheppe/magnetism_and-metallicity
https://github.com/patricktscheppe/magnetism_and-metallicity
https://www.pnas.org/lookup/doi/10.1073/pnas.2311486121#supplementary-materials
https://github.com/patricktscheppe/magnetism_and-metallicity
https://github.com/patricktscheppe/magnetism_and-metallicity

	Materials and Methods

