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Abstract
Machine learning approaches have recently emerged as powerful tools to probe structure-property
relationships in crystals and molecules. Specifically, machine learning interatomic potentials
(MLIPs) can accurately reproduce first-principles data at a cost similar to that of conventional
interatomic potential approaches. While MLIPs have been extensively tested across various classes
of materials and molecules, a clear characterization of the anharmonic terms encoded in the MLIPs
is lacking. Here, we benchmark popular MLIPs using the anharmonic vibrational Hamiltonian of
ThO2 in the fluorite crystal structure, which was constructed from density functional theory (DFT)
using our highly accurate and efficient irreducible derivative methods. The anharmonic
Hamiltonian was used to generate molecular dynamics (MD) trajectories, which were used to train
three classes of MLIPs: Gaussian approximation potentials, artificial neural networks (ANN), and
graph neural networks (GNN). The results were assessed by directly comparing phonons and their
interactions, as well as phonon linewidths, phonon lineshifts, and thermal conductivity. The
models were also trained on a DFT MD dataset, demonstrating good agreement up to fifth-order
for the ANN and GNN. Our analysis demonstrates that MLIPs have great potential for accurately
characterizing anharmonicity in materials systems at a fraction of the cost of conventional first
principles-based approaches.

1. Introduction

Phonon anharmonicity plays an essential role in the thermodynamics of materials systems. Thus,
constructing accurate vibrational Hamiltonians is critical for materials property prediction at finite
temperatures. In particular, faithfully resolving phonon interactions up to fourth-order is essential for
capturing leading order behavior of the phonon linewidths, phonon lineshifts, and thermal conductivity. In
order to systematically assess the phonons and their interactions, it is critical to use the minimum set of
derivatives allowed by group theory, which may be computed using irreducible derivative approaches [1–4].
Though these irreducible derivative methods are significantly more efficient than competing finite difference
approaches, higher-order derivatives in materials with large supercells may still be prohibitively expensive.
Recently, machine learning interatomic potentials (MLIPs) have emerged as powerful tools to represent the
Born-Oppenheimer potential of materials. MLIP methods can achieve near quantum chemical accuracy
relative to the ab initiomethod they were trained on while avoiding the polynomial scaling [5]. Here, we
assess the fidelity of anharmonic derivatives computed fromMLIPs.

MLIPs aim to represent the total energy of a given atomic configuration in terms of individual
contributions from each atom. Since the complete space of atomic displacements is high dimensional for
very large molecules and crystals, several descriptors have been developed to encode local atomic
environments [6] such as coulomb matrices [7], atom centered symmetry functions [8], smooth overlap of
atomic positions [9], and histograms of distances, angles, and dihedrals (HDAD) [10]. While understanding
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how well certain descriptor sets can represent anharmonic energy surfaces is important, it will not be directly
discussed in this work and will be the subject of further study. Our present goal is to assess the most prevalent
MLIPs in the literature, using the commonly associated descriptors. Therefore, our benchmarks will be
limited to three popular classes of potentials with publicly available software.

The first MLIP considered in this work is the Gaussian approximation potential (GAP) [11]. Here, each
atomic energy is expanded in terms of basis functions of the descriptors, and the distribution of basis weights
is assumed to be normally distributed about zero. Therefore, the energy of a given configuration is also
normally distributed, where the mean provides a prediction from the model, and the variance can be a
measure of uncertainity. The advantages of this type of potential are the characterization of model
uncertainty and that the analytical form of the prediction is a sum of basis functions. In practice, the number
of basis functions may be prohibitively large, and the ‘kernel trick’ is employed to reduce memory and cost
requirements. It should be noted that the energy prediction provided by GAP is equivalent to the prediction
of the kernel ridge regression on the same basis set. Recently, GAP has been used to predict second and
third-order derivatives in two dimensional materials where good agreement with density functional theory
(DFT) is achieved with integrated properties such as phonon lifetimes and thermal conductivity [12–16].
Online trained GAP models have also been implemented in the Vienna ab initio software package (VASP)
[17, 18] and have also been used along with approaches such as the stochastic self-consistent harmonic
approximation (SSCHA) [19] to predict temperature dependent phonon properties using Monte Carlo
sampling [20, 21].

While not directly formulated as a MLIP, several potential energy surface fitting approaches, such as
compressive sensing lattice dynamics (CSLD) [22, 23], have a similar mathematical foundation as GAP. In
both models, a Bayesian polynomial regression framework is used to fit model parameters to sampled DFT
data. While GAP generally fits descriptors of the local atomic environment, CSLD uses the complete
Cartesian coordinate basis which ensures that fitting coefficients are more analogous to force constants. Due
to the combinatorial explosion of high-order derivatives when using the Cartesian basis, least squares
solutions tend to overfit parameters. CSLD overcomes this impediment by fitting force constants using the
least absolute shrinkage and selection operator (LASSO), which has the same objective function as ordinary
least squares but with an additional penalty on the L1 norm of the model parameters [24]. The sparse
solutions provided by LASSO have yielded accurate anharmonic properties in various systems [22, 23, 25].

The second class of machine learning approaches we consider is the high dimensional artificial neural
network (ANN) first described by Behler and Parrinello (BPNN) [26]. In this model, each atomic species is
represented by a convolutional neural network, and the total energy is computed as a sum of the output of
each neural network. Historically, atom-centered symmetry functions [8] have been used as descriptors to
encode rotational invariance and have been systematically improved over time. Recently, a set of descriptors
constructed as irreducible representations of the Euclidean group has been shown to encode rotational
equivariance, providing better predictions of tensor properties [27], such as the forces. BPNNs have been
used to predict phonon dispersions and thermal conductivity in semiconductors [28–33], new
thermoelectric candidate materials [34], and superlattices [35].

Finally, the most recent developments in machine learning interatomic potentials have focused on graph
neural networks [5, 36–40]. In this architecture, graphs are constructed for all neighboring atoms where
nodes encode atomic information, and bonding information is incorporated through edge connections. Of
the three models described in this work, graph neural networks (GNN) have been shown to achieve the
highest accuracy in reproducing forces and energies while requiring fewer training samples than the other
two approaches. Recently, several developments have been aimed at developing a universal interatomic
potential trained on large DFT databases, such as the materials project [41], and phonon dispersions
computed using these universal models have shown good agreement with DFT [36, 39, 40]. While GNNs
have been used to predict thermal conductivity directly by training on experimental and first principles data
from materials property databases [42, 43], we are not aware of any other work using GNN interatomic
potentials to compute anharmonic observables via phonon interactions.

In this work, we benchmark how well MLIPs reconstruct anharmonic potentials in ThO2. We trained the
GAP, BPNN, and GNN using two datasets: one containing configurations evaluated by an anharmonic
Taylor series, which does not contain noise, and one generated using DFT calculations. In our analysis, we
quantify errors at the level of the irreducible derivatives of the potential energy surface, making our
benchmark more robust than benchmarks using integrated observables. In all three models, third-order
derivatives are in good agreement with the reference. Up to fifth-order derivatives are mostly reproduced by
the ANN and GNN, with the GNN demonstrating particularly promising accuracy. We also provide
comparisons of observables such as phonon dispersions, phonon linewidths, phonon lineshifts, and thermal
conductivity to quantify the effects of the errors in the irreducible derivatives.
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2. Computational methods and details

DFT calculations were performed using the projector augmented wave (PAW) method implemented in the
VASP using the local density approximation [17, 18]. The plane-wave basis cutoff energy was set to 500 eV. A
Γ centered 10×10×10 k-point mesh was used for primitive cell calculations, and measurements in other
supercells were conducted with corresponding k−mesh densities. Gaussian smearing with σ= 0.1 was used
for k-point integrations. DFT energies were converged to within 10−6 eV, and the unit cell was relaxed until
all forces were within 0.02 eVÅ−1.

Second (i.e. phonons), third, fourth, fifth, and sixth-order derivatives of the Born–Oppenheimer
potential of ThO2 were computed from DFT and the MLIPs via irreducible derivative approaches [1]. The
finite difference calculations were extrapolated to a discretization size of zero using quadratic errortails with
ten discretizations (for more information see [1, 3]). Phonons and third-order derivatives commensurate
with the 2× 2× 2 supercell, which contains 24 atoms, were computed using the lone irreducible derivative
approach with forces (LID1) and energy derivatives (LID0) for DFT and the MLIPs, respectively.
Fourth-order phonon interactions commensurate with the conventional cubic supercell, which contains 12
atoms, were computed using the bundled irreducible derivative (BID) approach for DFT due to the large
computational cost. While BID generally evaluates derivatives using the smallest set of displacements allowed
by group theory, in this case the number of displacements was tripled to ensure robust derivatives. The
fourth-order derivatives were evaluated with LID1 for all three machine learning models. Fifth-order
derivatives associated with the following Q points were selectively computed using LID1 for both DFT and
the MLIPs: Q=

((
1
2 ,0,0

)
,
(
1
2 ,0,0

)
,(0,0,0) ,(0,0,0) ,(0,0,0)

)
and Q= ((0,0,0) ,(0,0,0) ,(0,0,0) ,

(0,0,0) ,(0,0,0)). Finally, only sixth-order interactions commensurate with the primitive cell were measured
with LID1.

Two datasets were prepared to train the machine learning models. The first dataset derives from a
vibrational Hamiltonian containing second, third, and fourth-order irreducible derivatives computed from
DFT. Datapoints are generated by performing molecular dynamics (MD) on the irreducible derivative
Hamiltonian using the microcanonical ensemble, which we refer to as irreducible derivative molecular
dynamics (IDMD) [4]. As a result, all energies and forces in the dataset are in perfect agreement with the
irreducible derivatives, yielding a noiseless dataset, which we refer to as the IDMD dataset. The IDMD was
conducted in the 4× 4× 4 supercell, containing 192 atoms, for 4000 steps with a timestep of 4 fs. MD
trajectory velocities were initialized by sampling from the Maxwell–Boltzmann distribution at 2000K and a
temperature range of 1522–2238K was observed throughout the simulation. The second dataset, referred to
as DFTMD, was generated using ab initioMD in the conventional cubic cell tripled in all three dimensions
(3SC), which contains 324 atoms. MD was conducted using the canonical ensemble at 2000K and 3000K,
and 1346 snapshots were taken along the two trajectories. The DFTMD dataset was previously used to study
defect properties in ThO2 [44]. While this DFTMD dataset contains noise inherent to the numerics of the
DFT calculation, it probes all derivatives commensurate with the 3SC supercell up to infinite-order. Each
dataset was constructed to provide a unique test of the MLIPs. Since IDMD is a noiseless dataset, this
benchmark purely probes each MLIP’s ability to learn anharmonic interactions while avoiding any influence
of how well the model accuracy scales with noise. On the other hand, DFTMD is a dataset that has been
constructed in accordance with the current state-of-the-art and represents a typical dataset used for MLIP
training. Since DFTMD contains infinite-order interactions, it provides the opportunity to test the limits of
each MLIP and determine the order at which the MLIP fails to replicate DFT results.

All three MLIPs were trained on IDMD, and only the BPNN and GNN were trained on DFTMD. The
GAP model was generated using the quantum mechanics and interatomic potentials (QUIP) code [11, 45,
46]. Descriptors were constructed using two-body terms with a cutoff of 5 Å, three-body terms with a cutoff
of 4 Å, and with the smooth overlap of positions (SOAP) descriptor with a cutoff of 6 Å. The neural network
potential was trained using the n2p2 code [26, 47]. Atom-centered radial and angular symmetry functions
with a cutoff radius of 10 Å and 6Å were used, respectively. For each atom, a four-layer neural network was
constructed which contained two hidden layers with 21 neurons each. The size of the input layer for thorium
atoms was 41, while the size was 46 for oxygen atoms. Finally, the graph neural network was trained using
nequIP [5]. Graph edges were constructed with a cutoff of 6 Å with four interaction blocks. The E(3)
equivariant spherical harmonics were used with radial basis functions to form descriptor sets [27]. More
detailed model information for all three MLIPs is provided in supplementary information [48].

3. Results

We begin by analyzing the results of the machine learning models trained on IDMD. In figure 1, we show the
results of all three models where GAP, BPNN, and GNN results are shown in green, blue, and red,
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Figure 1. Results of the MLIPs trained on IDMD compared to the reference, where green, blue, and red dots indicate GAP, BPNN,
and GNN results, respectively. Panels (a) and (b) show the energies and forces for a distinct testing set, respectively. Panels (c) and
(d) compare the third and fourth-order irreducible derivatives computed from the MLIPs to the reference irreducible derivatives,
respectively.

Figure 2. Computed phonon dispersion, where green, blue, red, and black points represent explicit measurements of the
irreducible derivatives using GAP, BPNN, GNN, and the reference, respectively. Solid lines are a Fourier interpolation.

respectively. In figure 1(a), we compare energies computed on a distinct testing set generated using IDMD,
showing excellent agreement. Figure 1(b) compares the forces from all three models on the testing set; the
forces from GAP are in reasonable agreement with the reference, while the BPNN and GNN are in much
better agreement. In panels 1(c), (d) and table 1, the third and fourth-order irreducible derivatives are
compared to the reference. In all three models, the third-order derivatives are in good agreement with the
reference, with the GNN yielding the best fidelity of the three. At fourth-order, the BPNN and GNN are in
reasonable and good agreement with the reference, respectively, while the GAP model fails to provide
accurate irreducible derivatives.

To demonstrate the practical impact of the errors in the computed irreducible derivatives, we compare
several observables computed using irreducible derivatives obtained from each model. We begin by
presenting the phonon dispersion (see figure 2). Solid dots represent grid points where irreducible
derivatives are computed, and the solid lines are a Fourier interpolation. We demonstrate that for most
phonon branches, all three models are in good agreement with the reference, though the BPNN and the GAP
both have non-trivial discrepancies at the X and L points. We proceed by presenting the phonon linewidths
from the bubble diagram [4], which uses the third-order irreducible derivatives, in a typical acoustic and
optical branch (see figure 3). All other branches are included in supplementary material [48]. In the acoustic
branch (figure 3(a)), all three models are in relatively good agreement with the reference, though GAP
overestimates the linewidths near the X point by about 16%. The optical branch linewidths (figure 3(b)) are
more sensitive to errors in the irreducible derivatives, and thus, both GAP and BPNN yield discrepancies up
to 30% between Γ and X. We note that the GNN yields near perfect agreement with the reference for both
branches. Next, we present the phonon lineshifts computed by evaluating the loop diagram [4] using the
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Figure 3. Phonon linewidth contribution from the bubble diagram, which uses the third-order irreducible derivatives. Panels (a)
and (b) show the linewidth of an acoustic and optical branch along a high symmetry path, respectively. The GAP, BPNN, GNN,
and the reference are shown in green, blue, red, and black, respectively.

Figure 4. Phonon lineshift contribution from the loop diagram, which uses the fourth-order irreducible derivatives. The BPNN,
GNN, and the reference results are shown in blue, red, and black, respectively.

fourth-order irreducible derivatives (see figure 4). Only the BPNN and GNN lineshifts have been plotted due
to the large discrepancies in the GAP results (see supplementary material [48]). While the BPNN and GNN
are in good agreement with the reference for the acoustic branches, the BPNN significantly overestimates the
shifts of the optical branches, while the GNN is still within 18% of the reference. Finally, we compare the
thermal conductivity computed using the phonon lifetimes in the Boltzmann transport equation within the
relaxation time approximation. In panel 5(a), the phonon lifetimes have been evaluated using the bubble
diagram, which only uses the third-order derivatives, while in panel 5(b) phonon lifetimes have been
evaluated using only the sunset diagram [4], which uses the fourth-order irreducible derivatives. In both
cases, it is evident that the thermal conductivity is less sensitive to errors in the irreducible derivatives, and all
three models are in good agreement with the reference.

We proceed by discussing the results of the BPNN and GNNmodels trained on DFTMD. Since we have
already demonstrated that the GAP model fails to capture interactions beyond third-order, it was not used
for this benchmark aimed at determining the highest order of derivatives that can be faithfully reproduced
using MLIPs. We present a comparison of the third, fourth, fifth, and sixth-order irreducible derivatives
computed from the MLIPs and DFT (see figure 6 and table 1). For third, fourth, and fifth-order derivatives,

5



Mach. Learn.: Sci. Technol. 5 (2024) 030502 S Bandi et al

Figure 5. Thermal conductivity evaluated using lifetimes exclusively from the bubble diagram in panel (a) and lifetimes
exclusively from the sunset diagram in panel (b). GAP, BPNN, and GNN results are shown with green, blue, and red solid dots
and the reference results are shown with black diamonds. Solid lines are drawn to direct the eyes.

Figure 6. Anharmonic derivatives of the MLIPs trained on DFTMD compared to the DFT reference where BPNN and GNN
results are shown in blue and red, respectively.

both models are in excellent agreement with DFT, with the GNN outperforming the BPNN by a factor of 1.5
to 3 depending on the derivative order. At sixth-order, both models struggle to reproduce the irreducible
derivatives computed from DFT, though the GNN generates reasonable results, especially on low-magnitude
derivatives.

In the preceding, we benchmarked the ability of MLIPs to learn the anharmonic potential energy surface
in thoria, which is a band insulator. To understand the transferability of this benchmark to metallic systems,
we constructed a similar dataset to IDMD using the irreducible derivatives of face-centered cubic aluminum
and used it to train the GAP, BPNN, and GNN, where we found good agreement with the reference for
phonons, third-order, and fourth-order derivatives. The details and results of this benchmark can be found
in supplementary materials [48].
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Table 1. Table of root mean squared error divided by the average magnitude of the irreducible derivatives for each model trained on the
IDMD and DFTMD datasets.

IDMD DFTMD

3rd derivative 4th derivative 3rd derivative 4th derivative 5th derivative 6th derivative

GAP 0.2207 1.652 — — — —
BPNN 0.3100 0.480 0.1853 0.1890 0.4707 0.7965
GNN 0.0747 0.212 0.0587 0.1346 0.2991 0.1359

4. Conclusions

In summary, we have benchmarked three popular machine learning interatomic potentials on the
anharmonic irreducible derivatives of ThO2. We have developed two training datasets: one that is computed
from the anharmonic vibrational Hamiltonian of ThO2, containing up to quartic terms, and one that is
representative of training conducted via ab initiomethods in the literature. The Behler Parrinello ANN and
the GNN yield robust irreducible derivatives up to fifth-order, while the Gaussian approximation potential is
only able to accurately capture anharmonic interactions up to third-order. Our work demonstrates the
promising potential of machine learning methods in characterizing anharmonicity in materials systems.
While we obtained accurate results using MLIPs in the present study, it would be informative to verify that
our findings hold in systems with sensitivities, such as soft phonon modes. Future work will include
extending this analysis to strongly correlated electronic materials, where the generation of accurate training
data comes at a significant premium. Additionally, to study materials with strong anharmonicity, further
work will be conducted to develop training algorithms to more accurately capture sixth-order and beyond
interactions.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: 10.5281/
zenodo.10 928 194 [49].
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