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Computing the temperature and stress dependence of the full elastic constant tensor from first-
principles in non-cubic materials remains a challenging problem. Here we circumvent the aforemen-
tioned challenge via the generalized quasiharmonic approximation in conjunction with the irreducible
derivative approach for computing strain dependent phonons using finite difference, explicitly in-
cluding dipole-quadrupole contributions. We showcase this approach in ferroelectric PbTiO3 using
density functional theory, computing all independent elastic constants and piezoelectric strain co-
efficients at finite temperature and stress. There is good agreement between the quasiharmonic
approximation and the experimental lattice parameters close to 0 K. However, the quasiharmonic
approximation overestimates the temperature dependence of the lattice parameters and elastic con-
stant tensor, demonstrating that a higher level of strain dependent anharmonic vibrational theory
is needed.

Ferroelectric materials have been widely studied due
to technological importance and interesting physics [1–5].
Many ferroelectric materials are band insulators, which
are typically well described by density functional the-
ory (DFT). For prototypical ferroelectric band insulators,
the Born-Oppenheimer potential generated from appro-
priate exchange-correlation approximations within DFT
produce temperature dependent structural phase transi-
tions consistent with experiment [6–15], indicating an ac-
curate representation of the vibrational free energy. How-
ever, evaluating piezoelectric properties at finite temper-
atures and stress requires the computation of relevant
strain curvatures of the DFT based vibrational free en-
ergy at finite temperatures and stress (i.e. the elastic
constants). Computing these elastic constants requires
encoding or sampling the vibrational Hamiltonian as a
function of strain, evaluating the vibrational free energy
in some approximation as a function of strain, and eval-
uating the second strain derivatives of the free energy.
Each of the aforementioned tasks presents substantial
theoretical and computational challenges.

The standard approximation for computing finite tem-
perature elastic constants is the quasiharmonic approx-
imation (QHA) [16–18], yielding reasonable agreement
with experimental measurements for a variety of cubic
systems [19–25]. The computational cost of executing
the QHA within DFT is appreciable [26], as evidenced
by the sparsity of temperature dependent elastic constant
computations for non-cubic systems available in the lit-
erature [27–29], and we are not aware of any published
results at finite temperature and stress. The aforemen-
tioned limitations can be mitigated by using the recently
developed generalized quasiharmonic approximation [30],
which leverages the irreducible derivative approach to
computing phonons [31, 32]. Here we showcase the power
of the generalized QHA by studying the displacive fer-
roelectric PbTiO3 (spacegroup P4mm) using DFT, com-
puting the lattice parameters, full elastic constant tensor,
and piezoelectric strain coefficients at finite temperature
and stress. PbTiO3 is an ideal candidate to study within

Method a c z(Ti) z(O1,2) z(O3)

PBEsol 3.872 4.214 0.539 0.623 0.118

SCAN 3.865 4.341 0.545 0.638 0.139

PBEsol 3.891 4.164 0.539 0.618 0.112

Mestric et al. 3.891 4.168 0.542 0.629 0.124

TABLE I. Lattice parameters and direct atomic coordinates
along the z-direction. (Top) Results of DFT relaxation using
the PBEsol and SCAN functionals. (Bottom) T = 1 K QHA
results compared with measurements at T = 12 K [45].

the generalized QHA, as the low symmetry ferroelectric
phase persists to roughly T = 760 K [33–35].

DFT calculations were performed using the Vienna
ab initio simulation package (VASP) [36–39] with the
projector augmented wave (PAW) method [40, 41] un-
less otherwise stated. The generalized gradient approx-
imation (GGA) revised for solids (PBEsol) [42] and the
strongly constrained and appropriately normed (SCAN)
[43] exchange-correlation functionals were used. Conver-
gence of the strain dependent phonons was achieved with
a kinetic energy cutoff of 1000 eV and a Γ-centered k-
point mesh of 16×16×16 for the primitive unit cell with
corresponding mesh densities being used for supercells.
Details of the PAW potentials, finite difference calcula-
tions, and Fourier interpolation are provided in Sec. I
of the supplemental material (SM) [44]. The computa-
tionally relaxed crystal structures using the PBEsol and
SCAN functionals are compared with low temperature
experimental measurements in Table I. Due to the signif-
icant overestimation of the c lattice parameter by the
SCAN functional, computations use the PBEsol func-
tional unless otherwise stated.

We begin by showcasing the computed phonons in the
supercell ŜBZ = 41̂ (see Fig. 1 (a)), achieving good
agreement to previous computations [46]. The dipole-
dipole contribution to Fourier interpolated phonons is
included [30, 47, 48] shown as the red lines, where the
dielectric tensor and Born effective charges were calcu-
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lated from density functional perturbation theory [49, 50]
within VASP. Along the path from the Γ point to the R
point, there are interpolated imaginary phonon frequen-
cies caused by a deficiency in the Fourier interpolation,
which was elucidated in previous work [51]. Supplement-
ing the interpolation with the dipole-quadrupole inter-
actions has demonstrated the ability to remove these
spurious imaginary frequencies from the interpolation
[51]. Our Fourier interpolation of the phonons includ-
ing the dipole-dipole and the dipole-quadrupole contribu-
tions shown as the blue lines does not contain any spuri-
ous imaginary frequencies, consistent with results in Ref.
[51]. Computation of the dipole-quadrupole contribution
has been implemented analogously to the dipole-dipole
contribution, where dynamical quadrupoles were com-
puted [52] using density functional theory implemented
in the (ABINIT) package [53, 54] using the PBEsol opti-
mized norm-conserving Vanderbilt pseudopotential (ON-
CVPSP) [55]. Our results illustrate that both dipole-
dipole and dipole-quadrupole corrections to the Fourier
interpolation can straightforwardly be utilized in our ir-
reducible derivative approaches, which are based on the
finite difference method.

We now present selected generalized Gruneisen param-
eters,

γi,qℓ = − 1

ωqℓ

∂ωqℓ

∂ϵi
, (1)

which encapsulate the first order strain dependence of
the phonons along a given strain (see Fig. 1 (b) and
(c)). Computation of the full elastic constant tensor
within the QHA requires the phonons to be computed as
a function of all symmetrically distinct strains, whereas
thermal expansion computations only use strains asso-
ciated with changes in volume. Thus, panel b shows
the A◦

1 Gruneisen parameter associated with expansion
along the z-axis, where the symmetrized representations
of the identity strains are denoted as ϵA□

1
= 1√

2
(ϵxx+ϵyy)

and ϵA◦
1

= ϵzz. Integration of the density of states
yields averaged Gruneisen parameters of γ̄A□

1
=1.78 and

γ̄A◦
1
=0.28. Panel c shows the B1 Gruneisen parameter,

where ϵB1
= 1√

2
(ϵxx−ϵyy). Symmetry selection rules and

first order perturbation theory require the Gruneisen pa-
rameter to be zero along various directions in reciprocal
space.

Having computed the strain dependence of the
phonons, we apply the generalized quasiharmonic ap-
proximation to compute the a and c lattice parameters
at finite temperature and stress (see Fig. 2). We com-
pare with experimental measurements at various temper-
atures under unstressed conditions [33, 45, 56–58]. The
a and c lattice parameters are in good agreement within
the experimental measurements, as there is at most 0.5%
difference between various measurements at any given
temperature. Computation of the lattice parameters at
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FIG. 1. Phonons and specific Gruneisen parameters com-
puted from DFT (diamonds) within the 41̂ and 2ŜC su-
percells, respectively, and Fourier interpolated (lines). Left
panels show values along high symmetry directions, and
right panels show the density of states. (a) Computed
phonons which are Fourier interpolated with dipole-dipole
(red) or dipole-dipole and dipole-quadrupole (blue) contri-
butions. Gruneisen parameters computed with strains trans-
forming like the (b) A◦

1 and (c) B1 irreducible representations.

a given temperature T and stress σ is achieved through
the Biot strain function,

ϵ̃(T,σ), where σ̃(T, ϵ̃(T,σ)) = σ. (2)

where definitions and notation are equivalent to Ref. [30]
(see Eqs. 21-26). The phonons are computed on a grid
of strains and compared with a Taylor series expansion
of the phonons in strain, where convergence of the ther-
mal expansion is achieved when including first, second,
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FIG. 2. The a (panel a) and c (panel b) lattice parameters
computed with the QHA (lines) under unstressed (blue) and
stressed (red) conditions compared with previous experimen-
tal measurements (diamonds) [33, 45, 56–58].

and third strain derivatives within the Taylor series (see
Sec. I of the SM [44]). The crystal structure predicted
at T = 1 K by the QHA differs from the values obtained
from DFT relaxations due to zero point motion, and are
compared with experimental measurements at T = 12 K
[45] (see Table I). The predicted shift in lattice param-
eters due to zero-point motion yields remarkable agree-
ment with the values obtained from experiment, however
there are discrepancies in the predicted direct atomic co-
ordinates. The change in lattice parameters with tem-
perature is overestimated by the quasiharmonic approx-
imation which is well known for anharmonic materials
[59, 60]. Under the application of σA□

1
= −0.95 GPa and

σA◦
1
= −0.15 GPa, the a and c lattice parameter compu-

tations agree with experimental measurements at room
temperature.

Having computed the lattice parameters, we now dis-
cuss the strain curvature of the free energy at finite tem-
perature and stress. There are three experimentally rel-

evant quantities related to the free energy curvature at
finite stress [61]: the free energy curvature Cij , the elas-
tic wave propagation coefficient Sij , and the stress-strain
coefficient Bij . Additionally, elastic constants in ferro-
electrics can be measured under boundary conditions of
constant electric field E or constant electric displacement
field D. The relation between the two boundary condi-
tions is given by [62],

CD
ij (T,σ) =CE

ij (T,σ) +
∑
αβ

(
eαi(T,σ)×

eβj(T,σ)((ϵ̂
∞,S(T,σ))−1)αβ

)
, (3)

where ϵ̂∞,S is the relaxed-ion dielectric tensor at fixed
strain and eαi is the relaxed-ion piezoelectric stress coef-
ficient [62–65]. Our evaluation of ϵ̂∞,S and eαj at finite
temperature T and stress σ is achieved by using the value
at the strain corresponding to ϵ̃(T,σ).
We compute the elastic constant tensor at finite tem-

perature and stress, and compare with experimental val-
ues measured under unstressed conditions [66–68] (see
Fig. 3). The elastic constants which were not measured
at multiple temperatures are shown in Sec. II of the SM
[44]. There is good agreement within the experimental
values at room temperature, where the largest disagree-
ment is a 4% difference in the measured CD

44 values. At
room temperature, the QHA with PBEsol yields good
agreement for CE

11 and CE
44, however CD

33 and CD
44 are

overestimated and C66 is underestimated. The change
in the predicted elastic constants with temperature is
greater than the change observed in experiment, likely
due to an overestimation of the thermal expansion with
temperature (see Fig. 2) and due to the neglect of explicit
phonon interactions within the QHA [59, 60]. The change
in the constant D-field elastic constants with tempera-
ture is significantly greater than the change seen in ex-
perimental measurements, and is due to the temperature
dependence of eij and ϵ̂∞,S

ij . These relaxed-ion quantities
depend on the Γ-point dynamical matrix, and therefore
the temperature dependence is overestimated due to the
aforementioned volume and anharmonic effects.

We proceed with the computation of the piezoelectric
strain coefficients as a function of temperature and stress,
and compare with existing experimental values measured
under unstressed conditions [67–69] (see Fig. 4). The
piezoelectric strain coefficients dij are constructed using
the elastic constant tensor and the piezoelectric stress
coefficients [62, 70],

dαi(T,σ) =
∑
j

((B̂E(T,σ))−1)ijeαj(T,σ), (4)

where B̂E
ij denotes the stress-strain coefficient under a

constant electric field. The experimentally measured val-
ues of the piezoelectric strain coefficients [67–69] show
quantitative inconsistency, as the values vary as much as
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FIG. 3. Selected elastic constants under constant E fields
or D fields computed with the QHA (lines) under unstressed
(solid) and stressed (dashed) conditions compared with previ-
ous experimental measurements (markers) [67, 68]. The axial
and shear elastic constants are shown in panels a and b, re-
spectively.

50% for d33 and 20% for d31. Our quasiharmonic predic-
tions of the d33 and d31 overestimate the experimental
measurements, and the discrepancy can be explained by
differences in the CE

A□
1 A◦

1

and CE
33 elastic constants. We

compute values of d33 = 201.6 pC/N and d31 = −41.1
pC/N using Eq. 4, in good agreement with our QHA
predictions, by using the experimental values from Ref.
[67] and substituting the values of CE

A□
1 A◦

1

and CE
33 to the

room temperature computed values of 108.3 GPa and
56.2 GPa, respectively. The temperature dependence of
the d31 piezoelectric coefficient agrees with the only tem-
perature dependent experimental measurement [69] from
low temperatures up to room temperature, where the
QHA predictions increase rapidly.

In summary, we have demonstrated the application of
the generalized quasiharmonic approximation to a non-
cubic crystal, ferroelectric PbTiO3, under conditions of
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FIG. 4. Piezoelectric strain coefficients −d31, d33, and
d15 computed with QHA (lines) under unstressed (blue) and
stressed (red) conditions compared with existing experimen-
tal measurements (circles) [67–69] are shown in panels a, b,
and c, respectively.

finite temperature and stress. The irreducible deriva-
tive approach to computing phonons from finite differ-
ence yields the strain dependent phonons, where dipole-
quadrupole effects are successfully incorporated in the
Fourier interpolation. The thermal expansion, elastic
constants, and piezoelectric strain coefficients are com-
puted at finite temperature and stress. The temper-
ature dependence of the thermal expansion and elastic
constants at zero stress are over estimated by the quasi-
harmonic approximation, illustrating the need to solve
the vibrational Hamiltonian of PbTiO3 using a strain-
dependent theory which explicitly accounts for phonon
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interactions. Our observed limitations of the QHA are
not unexpected, as discrepancies of the QHA are well
known in various anharmonic materials [59, 60]. Ad-
vances in the computation of finite temperature vibra-
tional properties from DFT using more sophisticated ap-
proximations than the QHA have been achieved [71–76],
however we are not aware of the application of any of
these theories to the computation of the elastic constant
tensor at finite temperature. These more advanced the-
ories can be straightforwardly applied as a function of
strain to compute thermal expansion and elastic con-
stants at finite temperature and stress using the general
formalism outlined previously [30], which will be the sub-
ject of future work.
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