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Machine learning approaches have recently emerged as powerful tools to probe structure-property
relationships in crystals and molecules. Specifically, Machine learning interatomic potentials (MLIP)
can accurately reproduce first-principles data at a cost similar to that of conventional interatomic
potential approaches. While MLIP have been extensively tested across various classes of materials
and molecules, a clear characterization of the anharmonic terms encoded in the MLIP is lacking.
Here, we benchmark popular MLIP using the anharmonic vibrational Hamiltonian of ThO2 in the
fluorite crystal structure. This anharmonic Hamiltonian was constructed from density functional
theory (DFT) using our highly accurate and efficient irreducible derivative methods, and then used
to generate molecular dynamics trajectories. This data set was used to train three classes of MLIP:
Gaussian Approximation Potentials, Artificial Neural Networks (ANN), and Graph Neural Networks
(GNN). The results were assessed by directly comparing phonons and their interactions, as well as
phonon linewidths, phonon lineshifts, and thermal conductivity. The models were also trained on
a DFT molecular dynamics dataset, demonstrating good agreement up to fifth-order for the ANN
and GNN. Our analysis demonstrates that MLIP have great potential for accurately characterizing
anharmonicity in materials systems at a fraction of the cost of conventional first principles-based
approaches.

I. INTRODUCTION

Phonon anharmonicity plays an essential role in the
thermodynamics of materials systems. Thus, construct-
ing accurate vibrational Hamiltonians is critical for ma-
terials property prediction at finite temperatures. In
particular, faithfully resolving phonon interactions up to
fourth-order is essential for capturing leading order be-
havior of the phonon linewidths, phonon lineshifts, and
thermal conductivity. In order to systematically assess
the phonons and their interactions, it is critical to use
the minimum set of derivatives allowed by group the-
ory, which may be computed using irreducible derivative
approaches [1–4]. Though these irreducible derivative
methods are significantly more efficient than competing
finite difference approaches, higher-order derivatives in
materials with large supercells may still be prohibitively
expensive. Recently, machine learning interatomic po-
tentials (MLIP) have emerged as powerful tools to repre-
sent the Born-Oppenheimer potential of materials. MLIP
methods can achieve near quantum chemical accuracy
relative to the ab initio method they were trained on
while avoiding the polynomial scaling [5]. Here, we as-
sess the fidelity of anharmonic derivatives computed from
MLIP.

MLIP aim to represent the total energy of a given
atomic configuration in terms of individual contribu-
tions from each atom. Since the complete space of
atomic displacements is high dimensional for very large
molecules and crystals, several descriptors have been de-
veloped to encode local atomic environments [6] such
as coulomb matrices [7], atom centered symmetry func-
tions [8], smooth overlap of atomic positions [9], and his-
tograms of distances, angles, and dihedrals (HDAD) [10].

While understanding how well certain descriptor sets can
represent anharmonic energy surfaces is important, it will
not be directly discussed in this work and will be the sub-
ject of further study. Our present goal is to assess the
most prevalent MLIP in the literature, using the com-
monly associated descriptors. Therefore, our benchmarks
will be limited to three popular classes of potentials with
publicly available software.

The first MLIP considered in this work is the Gaus-
sian approximation potential (GAP) [11]. Here, each
atomic energy is expanded in terms of basis functions
of the descriptors, and the distribution of basis weights
is assumed to be normally distributed about zero. There-
fore, the energy of a given configuration is also normally
distributed, where the mean provides a prediction from
the model, and the variance can be a measure of un-
certainity. The advantages of this type of potential are
the characterization of model uncertainty and that the
analytical form of the prediction is a sum of basis func-
tions. In practice, the size of basis functions may be
prohibitively large, and the “kernel trick” is employed
to reduce memory and cost requirements. It should be
noted that the energy prediction provided by GAP is
equivalent to the prediction of the kernel ridge regres-
sion on the same basis set. Recently, GAP has been used
to predict second and third-order derivatives in two di-
mensional materials where good agreement with DFT is
achieved with integrated properties such as phonon life-
times and thermal conductivity [12–16]. Online trained
GAP models have also been implemented in the Vienna
ab initio software package (VASP) [17, 18] and have also
been used along with approaches such as the stochastic
self-consistant harmonic approximation (SSCHA) [19] to
predict temperature dependent phonon properties using
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monte carlo sampling [20, 21].

While not directly formulated as a MLIP, several po-
tential energy surface fitting approaches, such as com-
pressive sensing lattice dynamics (CSLD) [22, 23], have a
similar mathematical foundation as GAP. In both mod-
els, a Bayesian polynomial regression framework is used
to fit model parameters to sampled DFT data. While
GAP generally fits descriptors of the local atomic envi-
ronment, CSLD uses the complete Cartesian coordinate
basis which ensures that fitting coefficients are more anal-
ogous to force constants. Due to the combinatorial explo-
sion of high-order derivatives when using the Cartesian
basis, least squares solutions tend to overfit parameters.
CSLD overcomes this impediment by fitting force con-
stants using the least absolute shrinkage and selection op-
erator (LASSO), which has the same objective function
as ordinary least squares but with an additional penalty
on the L1 norm of the model parameters [24]. The sparse
solutions provided by LASSO have yielded accurate an-
harmonic properties in various systems [22, 23, 25].

The second class of machine learning approaches we
consider is the high dimensional artificial neural network
first described by Behler and Parrinello (BPNN) [26]. In
this model, each atomic species is represented by a convo-
lutional neural network, and the total energy is computed
as a sum of the output of each neural network. Histor-
ically, atom-centered symmetry functions [8] have been
used as descriptors to encode rotational invariance and
have been systematically improved over time. Recently,
a set of descriptors constructed as irreducible represen-
tations of the Euclidean group has been shown to encode
rotational equivariance, providing better predictions of
tensor properties [27], such as the forces. BPNNs have
been used to predict phonon dispersions and thermal con-
ductivity in semiconductors [28–31], new thermoelectric
candidate materials [32], and superlattices [33].

Finally, the most recent developments in machine
learning interatomic potentials have focused on graph
neural networks [5, 34–38]. In this architecture, graphs
are constructed for all neighboring atoms where nodes en-
code atomic information, and bonding information is in-
corporated through edge connections. Of the three mod-
els described in this work, graph neural networks have
been shown to achieve the highest accuracy in repro-
ducing forces and energies while requiring fewer training
samples than the other two approaches. Recently, several
developments have been aimed at developing a universal
interatomic potential trained on large DFT databases,
such as the materials project [39], and phonon disper-
sions computed using these universal models have shown
good agreement with DFT [34, 37, 38]. While graph neu-
ral networks have been used to predict thermal conduc-
tivity directly by training on experimental and first prin-
ciples data from materials property databases [40, 41],
we are not aware of any other work using graph neural
network interatomic potentials to compute anharmonic
observables via phonon interactions.

In this work, we benchmark how well MLIP recon-

structs anharmonic potentials. We trained the GAP,
BPNN, and GNN using two datasets: one containing
configurations evaluated by an anharmonic Taylor series,
which does not contain noise, and one generated using
DFT calculations. In our analysis, we quantify errors
at the level of the irreducible derivatives of the poten-
tial energy surface, making our benchmark more robust
than benchmarks using integrated observables. In all
three models, third-order derivatives are in good agree-
ment with the reference. Up to fifth-order derivatives are
mostly reproduced by the ANN and GNN, with the GNN
demonstrating particularly promising accuracy. We also
provide comparisons of observables such as phonon dis-
persions, phonon linewidths, phonon lineshifts, and ther-
mal conductivity to quantify the effects of the errors in
the irreducible derivatives.

II. COMPUTATIONAL METHODS AND
DETAILS

DFT calculations were performed using the projector
augmented wave (PAW) method implemented in the Vi-
enna ab initio software package (VASP) using the local
density approximation [17, 18]. The plane-wave basis
cutoff energy was set to 500 eV. A Γ centered 10×10×10
k-point mesh was used for primitive cell calculations,
and measurements in other supercells were conducted
with corresponding k−mesh denisties. Gaussian smear-
ing with σ = 0.1 was used to avoid numerical errors dur-
ing k-point summation. DFT energies were converged to
within 10−6 eV, and the unit cell was relaxed until all
forces were within 0.02 eV/Å.
Second (phonons), third, fourth, fifth, and sixth-order

derivatives of the Born-Oppenheimer potential of ThO2

were computed from density functional theory and the
MLIP via using irreducible derivative approaches [1].
The finite difference calculations were extrapolated to a
discretization size of zero using quadratic errortails with
ten ∆s (for more information see [1, 3]). Phonons and
third-order derivatives commensurate with the 2× 2× 2
supercell, which contains 24 atoms, were computed us-
ing the lone irreducible derivative approach with forces
(LID1) and energy derivatives (LID0) for DFT and MLIP,
respectively. Fourth-order phonon interactions commen-
surate with the conventional cubic supercell, which con-
tains 12 atoms, were computed using the bundled irre-
ducible derivative (BID) approach for DFT due to the
large computational cost. While BID generally evalu-
ates derivatives using the smallest set of measurements
allowed by group theory, in this case the number of mea-
surements was tripled to ensure robust derivatives. The
fourth-order derivatives were evaluated with LID1 for
all three machine learning models. Fifth-order deriva-
tives associated with the following Q points were selec-
tively computed using LID1 for both DFT and MLIP:
Q =

((
1
2 , 0, 0

)
,
(
1
2 , 0, 0

)
, (0, 0, 0) , (0, 0, 0) , (0, 0, 0)

)
and

Q = ((0, 0, 0) , (0, 0, 0) , (0, 0, 0) , (0, 0, 0) , (0, 0, 0)) Fi-
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nally, only sixth-order interactions commensurate with
the primitive cell were measured with LID1.

Two datasets were prepared to train the machine learn-
ing models. The first dataset derives from a vibrational
Hamiltonian containing second, third, and fourth-order
irreducible derivatives computed from DFT. Datapoints
are generated by performing molecular dynamics on the
irreducible derivative Hamiltonian using the microcanon-
ical ensemble, which we refer to as irreducible derivative
molecular dynamics (IDMD) [4]. As a result, all energies
and forces in the dataset are in perfect agreement with
the irreducible derivatives, yielding a noiseless dataset,
which we refer to as the IDMD dataset. The IDMD
was conducted in the 4× 4× 4 supercell, containing 192
atoms, for 4000 steps with a timestep of 4fs. MD tra-
jectory velocities were initialized by sampling from the
Maxwell-Boltzmann distribution at 2000K and a tem-
perature range of 1522K-2238K was observed through-
out the simulation. The second dataset, referred to as
DFTMD, was generated using ab initio molecular dy-
namics in the conventional cubic cell tripled in all three
dimensions (3SC), which contains 324 atoms. MD was
conducted using the canonical ensemble at 2000K and
3000K, and 1346 snapshots were taken along the two tra-
jectories. While this dataset contains noise inherent to
the numerics of the DFT calculation, it probes all deriva-
tives commensurate with the 3SC supercell up to infinite-
order. Each dataset was constructed to provide a unique
test of the MLIP. Since IDMD is a noiseless dataset, this
benchmark purely probes each MLIP ability to learn an-
harmonic interactions while avoiding any influence of how
well the model accuracy scales with noise. On the other
hand, DFTMD is a dataset that has been constructed
in accordance with the current state-of-the-art and rep-
resents a typical dataset used for MLIP training. Since
DFTMD dataset contains infinite-order interactions, it
provides the opportunity to test the limits of each MLIP
and determine the order at which the MLIP fails to repli-
cate DFT results.

All three MLIP were trained on IDMD, and only the
BPNN and GNN were trained on DFTMD. The GAP
model was generated using the quantum mechanics and
interatomic potentials (QUIP) code [11, 42, 43]. Descrip-
tors were constructed using two-body and three-body
terms with a cutoff of 6 Å, along with the smooth overlap
of positions (SOAP) descriptor with a cutoff of 4 Å. The
neural network potential was trained using the n2p2 code
[26, 44]. Atom-centered radial and angular symmetry
functions with a cutoff radius of 10Å and 6Å were used,
respectively. For each atom, a four-layer neural network
was constructed which contained two hidden layers with
21 neurons each. The size of the input layer for thorium
atoms was 41, while the size was 46 for oxygen atoms. Fi-
nally, the graph neural network was trained using nequIP
[5]. Graph edges were constructed with a cutoff of 6 Å
with four interaction blocks. The E(3) equivariant spher-
ical harmonics were used with radial basis functions to
form descriptor sets [27]. More detailed model informa-

tion for all three machine learning interatomic potentials
is provided in supplementary information.

III. RESULTS
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FIG. 1. Results of the MLIP trained on IDMD compared to
the reference, where green, blue, and red dots indicate GAP,
BPNN, and GNN results, respectively. Panels a and b show
the energies and forces for a distinct testing set, respectively.
Panels c and d compare the third and fourth-order irreducible
derivatives computed from MLIP to the reference irreducible
derivatives, respectively.
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FIG. 2. Phonon dispersion computed in the 2Î FTG, where
green, blue, red, and black points represent explicit measure-
ments of the irreducible derivatives using GAP, BPNN, GNN,
and the reference, respectively. Solid lines are a Fourier in-
terpolation.
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IDMD DFTMD

3rd Derivative 4th Derivative 3rd Derivative 4th Derivative 5th Derivative 6th Derivative

GAP 0.2207 1.652 - - - -

BPNN 0.3100 0.480 0.1853 0.1890 0.4707 0.7965

GNN 0.0747 0.212 0.0587 0.1346 0.2991 0.1359

TABLE I. Table of root mean squared error divided by the average magnitude of the irreducible derivatives for each model
trained on the IDMD and DFTMD datasets.
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FIG. 3. Phonon linewidth contribution from the bubble dia-
gram, which uses the third-order irreducible derivatives. Pan-
els a and b show the linewidth of an acoustic and optical
branch along a high symmetry path, respectively. The GAP,
BPNN, GNN, and the reference are shown in green, blue, red,
and black, respectively.

We begin by analyzing the results of the machine learn-
ing models trained on IDMD. In Fig. 1, we show the
results of all three models where GAP, BPNN, and GNN
results are shown in green, blue, and red, respectively.
In figure 1 (a), we compare energies computed on a dis-
tinct testing set generated using IDMD, showing excel-
lent agreement. Figure 1 (b) compares the forces from
all three models on the testing set; the forces from GAP
are in reasonable agreement with the reference, while the
BPNN and GNN are in much better agreement. In pan-
els 1(c) and 1(d) and table I, the third and fourth-order
irreducible derivatives are compared to the reference. In
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FIG. 4. Phonon lineshift contribution from the loop dia-
gram, which uses the fourth-order irreducible derivatives. The
BPNN, GNN, and the reference results are shown in blue, red,
and black, respectively.

all three models, the third-order derivatives are in good
agreement with the reference, with the GNN yielding the
best fidelity of the three. At fourth-order, the BPNN and
GNN are in reasonable and good agreement with the ref-
erence, respectively, while the GAP model fails to provide
accurate irreducible derivatives.
To demonstrate the practical impact of the errors in

the computed irreducible derivatives, we compare sev-
eral observables computed using irreducible derivatives
obtained from each model. We begin by presenting the
phonon dispersion (see Fig. 2). Solid dots represent grid
points where irreducible derivatives are computed, and
the solid lines are a Fourier interpolation. We demon-
strate that for most phonon branches, all three models
are in good agreement with the reference, though the
BPNN and the GAP both have non-trivial discrepan-
cies at the X and L points. We proceed by present-
ing the phonon linewidths from the bubble diagram [4],
which uses the third-order irreducible derivatives, in a
typical acoustic and optical branch (see Fig. 3). All
other branches are included in supplementary material.
In the acoustic branch (Fig 3(a)), all three models are
in relatively good agreement with the reference, though
GAP overestimates the linewidths near the X point by
about 16%. The optical branch linewidths (Fig. 3(b))
are more sensitive to errors in the irreducible derivatives,
and thus, both GAP and BPNN yield discrepancies up to
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FIG. 5. Thermal conductivity evaluated using lifetimes from
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sults are shown with green, blue, and red solid dots and the
reference results are shown with black diamonds. Solid lines
are drawn to direct the eyes.

30% between γ andX. We note that the GNN yields near
perfect agreement with the reference for both branches.
Next, we present the phonon lineshifts computed by eval-
uating the loop diagram [4] using the fourth-order irre-
ducible derivatives (see Fig. 4). Only the BPNN and
GNN lineshifts have been plotted due to the massive dis-
crepancies in the GAP results (see supplementary ma-
terial). While both models are in good agreement with
the reference for the acoustic branches, the BPNN signif-
icantly overestimates the shifts of the optical branches,
while the GNN is still within 18% of the reference. Fi-
nally, we compare the thermal conductivity computed
using the phonon lifetimes in the Boltzmann transport
equation within the relaxation time approximation. In
panel 5(a), the phonon lifetimes have been evaluated us-
ing the bubble diagram, which only uses the third-order
derivatives, while in panel 5b phonon lifetimes have been
evaluated using only the sunset diagram [4], which uses
the fourth-order irreducible derivatives. In both cases,
it is evident that the thermal conductivity is less sensi-
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FIG. 6. Anharmonic derivatives of the MLIP trained on
DFTMD compared to the DFT reference where BPNN and
GNN results are shown in blue and red, respectively.

tive to errors in the irreducible derivatives, and all three
models are in good agreement with the reference.
We proceed by discussing the results of the BPNN

and GNN models trained on DFTMD. Since we have al-
ready demonstrated that the GAP model fails to cap-
ture interactions beyond third-order, it was not used for
this benchmark aimed at determining the highest order
of derivatives that can be faithfully reproduced using
MLIP. We present a comparison of the third, fourth,
fifth, and sixth-order irreducible derivatives computed
from the MLIP and DFT (see Fig. 6 and Table I). For
third 6(a), fourth 6(b), and fifth-order 6(c) derivatives,
both models are in excellent agreement with DFT, with
the GNN outperforming the BPNN by a factor of 1.5 to
3 depending on the derivative order. At sixth-order 6(d),
both models fail to reproduce the irreducible derivatives
computed from DFT, though the graph neural network
generates reasonable results, especially on low-magnitude
derivatives.

IV. CONCLUSIONS

In summary, we have benchmarked three popular ma-
chine learning interatomic potentials on the anharmonic
irreducible derivatives of ThO2. We have developed two
training datasets: one that is computed from the anhar-
monic vibrational Hamiltonian of ThO2, containing up
to quartic terms, and one that is representative of train-
ing conducted via ab initio methods in the literature.
The Behler Parrinello artificial neural network and the
graph neural network yield robust irreducible derivatives
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up to fifth-order, while the Gaussian approximation po-
tential is only able to accurately capture anharmonic in-
teractions up to third-order. Our work demonstrates the
promising potential of machine learning methods in char-
acterizing anharmonicity in materials systems. While
we obtained accurate results using MLIP in the present
study, it would be interesting to verify that our findings
hold in systems with sensitivities, such as soft phonon
modes. Future work will include extending this analy-
sis to strongly correlated electronic materials, where the
generation of accurate training data comes at a signif-
icant premium. Additionally, to study materials with
strong anharmonicity, further work will be conducted to
develop training algorithms to more accurately capture

sixth-order and beyond interactions.
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